18,089 research outputs found

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    Raychaudhuri's equation and aspects of relativistic charged collapse

    Full text link
    We use the Raychaudhuri equation to probe certain aspects related to the gravitational collapse of a charged medium. The aim is to identify the stresses the Maxwell field exerts on the fluid and discuss their potential implications. Particular attention is given to those stresses that resist contraction. After looking at the general case, we consider the two opposite limits of poor and high electrical conductivity. In the former there are electric fields but no currents, while in the latter the situation is reversed. When the conductivity is low, we find that the main agents acting against the collapse are the Coulomb forces triggered by the presence of an excess charge. At the ideal Magnetohydrodynamic (MHD) limit, on the other hand, the strongest resistance seems to come from the tension of the magnetic forcelines. In either case, we discuss whether and how the aforementioned resisting stresses may halt the contraction and provide a set of conditions making this likely to happen.Comment: Revised version, to appear in PR

    Magnetized Tolman-Bondi Collapse

    Full text link
    We investigate the gravitational implosion of magnetized matter by studying the inhomogeneous collapse of a weakly magnetized Tolman-Bondi spacetime. The role of the field is analyzed by looking at the convergence of neighboring particle worldlines. In particular, we identify the magnetically related stresses in the Raychaudhuri equation and use the Tolman-Bondi metric to evaluate their impact on the collapsing dust. We find that, despite the low energy level of the field, the Lorentz force dominates the advanced stages of the collapse, leading to a strongly anisotropic contraction. In addition, of all the magnetic stresses, those that resist the collapse are found to grow faster.Comment: 6 pages, RevTex; v2: physical interpretation of the results slightly changed, references added, version accepted in Phys. Rev. D (2006

    Inverse Scattering Transform for the Camassa-Holm equation

    Get PDF
    An Inverse Scattering Method is developed for the Camassa-Holm equation. As an illustration of our approach the solutions corresponding to the reflectionless potentials are explicitly constructed in terms of the scattering data. The main difference with respect to the standard Inverse Scattering Transform lies in the fact that we have a weighted spectral problem. We therefore have to develop different asymptotic expansions.Comment: 17 pages, LaTe

    The Casimir Effect for Parallel Plates Revisited

    Full text link
    The Casimir effect for a massless scalar field with Dirichlet and periodic boundary conditions (b.c.) on infinite parallel plates is revisited in the local quantum field theory (lqft) framework introduced by B.Kay. The model displays a number of more realistic features than the ones he treated. In addition to local observables, as the energy density, we propose to consider intensive variables, such as the energy per unit area ϵ\epsilon, as fundamental observables. Adopting this view, lqft rejects Dirichlet (the same result may be proved for Neumann or mixed) b.c., and accepts periodic b.c.: in the former case ϵ\epsilon diverges, in the latter it is finite, as is shown by an expression for the local energy density obtained from lqft through the use of the Poisson summation formula. Another way to see this uses methods from the Euler summation formula: in the proof of regularization independence of the energy per unit area, a regularization-dependent surface term arises upon use of Dirichlet b.c. but not periodic b.c.. For the conformally invariant scalar quantum field, this surface term is absent, due to the condition of zero trace of the energy momentum tensor, as remarked by B.De Witt. The latter property does not hold in tha application to the dark energy problem in Cosmology, in which we argue that periodic b.c. might play a distinguished role.Comment: 25 pages, no figures, late

    Superrevivals in the quantum dynamics of a particle confined in a finite square well potential

    Get PDF
    We examine the revival features in wave packet dynamics of a particle confined in a finite square well potential. The possibility of tunneling modifies the revival pattern as compared to an infinite square well potential. We study the dependence of the revival times on the depth of the square well and predict the existence of superrevivals. The nature of these superrevivals is compared with similar features seen in the dynamics of wavepackets in an anharmonic oscillator potential.Comment: 8 pages in Latex two-column format with 5 figures (eps). To appear in Physical Review

    Neural Network-Based Equations for Predicting PGA and PGV in Texas, Oklahoma, and Kansas

    Full text link
    Parts of Texas, Oklahoma, and Kansas have experienced increased rates of seismicity in recent years, providing new datasets of earthquake recordings to develop ground motion prediction models for this particular region of the Central and Eastern North America (CENA). This paper outlines a framework for using Artificial Neural Networks (ANNs) to develop attenuation models from the ground motion recordings in this region. While attenuation models exist for the CENA, concerns over the increased rate of seismicity in this region necessitate investigation of ground motions prediction models particular to these states. To do so, an ANN-based framework is proposed to predict peak ground acceleration (PGA) and peak ground velocity (PGV) given magnitude, earthquake source-to-site distance, and shear wave velocity. In this framework, approximately 4,500 ground motions with magnitude greater than 3.0 recorded in these three states (Texas, Oklahoma, and Kansas) since 2005 are considered. Results from this study suggest that existing ground motion prediction models developed for CENA do not accurately predict the ground motion intensity measures for earthquakes in this region, especially for those with low source-to-site distances or on very soft soil conditions. The proposed ANN models provide much more accurate prediction of the ground motion intensity measures at all distances and magnitudes. The proposed ANN models are also converted to relatively simple mathematical equations so that engineers can easily use them to predict the ground motion intensity measures for future events. Finally, through a sensitivity analysis, the contributions of the predictive parameters to the prediction of the considered intensity measures are investigated.Comment: 5th Geotechnical Earthquake Engineering and Soil Dynamics Conference, Austin, TX, USA, June 10-13. (2018

    The Wisconsin H-Alpha Mapper Northern Sky Survey

    Full text link
    The Wisconsin H-Alpha Mapper (WHAM) has surveyed the distribution and kinematics of ionized gas in the Galaxy above declination -30 degrees. The WHAM Northern Sky Survey (WHAM-NSS) has an angular resolution of one degree and provides the first absolutely-calibrated, kinematically-resolved map of the H-Alpha emission from the Warm Ionized Medium (WIM) within ~ +/-100 km/s of the Local Standard of Rest. Leveraging WHAM's 12 km/s spectral resolution, we have modeled and removed atmospheric emission and zodiacal absorption features from each of the 37,565 spectra. The resulting H-Alpha profiles reveal ionized gas detected in nearly every direction on the sky with a sensitivity of 0.15 R (3 sigma). Complex distributions of ionized gas are revealed in the nearby spiral arms up to 1-2 kpc away from the Galactic plane. Toward the inner Galaxy, the WHAM-NSS provides information about the WIM out to the tangent point down to a few degrees from the plane. Ionized gas is also detected toward many intermediate velocity clouds at high latitudes. Several new H II regions are revealed around early B-stars and evolved stellar cores (sdB/O). This work presents the details of the instrument, the survey, and the data reduction techniques. The WHAM-NSS is also presented and analyzed for its gross properties. Finally, some general conclusions are presented about the nature of the WIM as revealed by the WHAM-NSS.Comment: 42 pages, 14 figures (Fig 6-9 & 14 are full color); accepted for publication in 2003, ApJ, 149; Original quality figures (as well as data for the survey) are available at http://www.astro.wisc.edu/wham

    The Dynamics of a Meandering River

    Full text link
    We present a statistical model of a meandering river on an alluvial plane which is motivated by the physical non-linear dynamics of the river channel migration and by describing heterogeneity of the terrain by noise. We study the dynamics analytically and numerically. The motion of the river channel is unstable and we show that by inclusion of the formation of ox-bow lakes, the system may be stabilised. We then calculate the steady state and show that it is in agreement with simulations and measurements of field data.Comment: Revtex, 12 pages, 2 postscript figure

    Magnetic tension and gravitational collapse

    Full text link
    The gravitational collapse of a magnetised medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic lines can be prevented from focusing without violating the standard energy conditions.Comment: Typos corrected. Published versio
    • …
    corecore