90 research outputs found

    Host phylogeny, geographic overlap, and roost sharing shape parasite communities in European bats

    Get PDF
    How multitrophic relationships between wildlife communities and their ectoparasitic vectors interact to shape the diversity of vector-borne microorganisms is poorly understood. Nested levels of dependence among microbes, vectors, and vertebrate hosts may have complicated effects on both microbial community assembly and evolution. We examined Bartonella sequences from European bats and their ectoparasites with a combination of network analysis, Bayesian phylogenetics, tip-association and cophylogeny tests, and linear regression to understand the ecological and evolutionary processes that shape parasite communities. We detected seven bat-ectoparasite-Bartonella communities that can be differentiated based on bat families and roosting patterns. Tips of the Bartonella tree were significantly clustered by host taxonomy and geography. We also found significant evidence of evolutionary congruence between bat host and Bartonella phylogenies, indicating that bacterial species have evolved to infect related bat species. Exploring these ecological and evolutionary associations further, we found that sharing of Bartonella species among bat hosts was strongly associated with host phylogenetic distance and roost sharing and less strongly with geographic range overlap. Ectoparasite sharing between hosts was strongly predicted by host phylogenetic distance, roost sharing, and geographic overlap but had no additive effect on Bartonella sharing. Finally, historical Bartonella host-switching was more frequent for closely related bats after accounting for sampling bias among bat species. This study helps to disentangle the complex ecology and evolution of Bartonella bacteria in bat species and their arthropod vectors. Our work provides insight into the important mechanisms that partition parasite communities among hosts, particularly the effect of host phylogeny and roost sharing, and could help to elucidate the evolutionary patterns of other diverse vector-borne microorganisms

    Host phylogeny, geographic overlap, and roost sharing shape parasite communities in European bats

    Get PDF
    How multitrophic relationships between wildlife communities and their ectoparasitic vectors interact to shape the diversity of vector-borne microorganisms is poorly understood. Nested levels of dependence among microbes, vectors, and vertebrate hosts may have complicated effects on both microbial community assembly and evolution. We examined Bartonella sequences from European bats and their ectoparasites with a combination of network analysis, Bayesian phylogenetics, tip-association and cophylogeny tests, and linear regression to understand the ecological and evolutionary processes that shape parasite communities. We detected seven batectoparasite-Bartonella communities that can be differentiated based on bat families and roosting patterns. Tips of the Bartonella tree were significantly clustered by host taxonomy and geography. We also found significant evidence of evolutionary congruence between bat host and Bartonella phylogenies, indicating that bacterial species have evolved to infect related bat species. Exploring these ecological and evolutionary associations further, we found that sharing of Bartonella species among bat hosts was strongly associated with host phylogenetic distance and roost sharing and less strongly with geographic range overlap. Ectoparasite sharing between hosts was strongly predicted by host phylogenetic distance, roost sharing, and geographic overlap but had no additive effect on Bartonella sharing. Finally, historical Bartonella host-switching was more frequent for closely related bats after accounting for sampling bias among bat species. This study helps to disentangle the complex ecology and evolution of Bartonella bacteria in bat species and their arthropod vectors. Our work provides insight into the important mechanisms that partition parasite communities among hosts, particularly the effect of host phylogeny and roost sharing, and could help to elucidate the evolutionary patterns of other diverse vector-borne microorganisms

    Host Phylogeny, Geographic Overlap, and Roost Sharing Shape Parasite Communities in European Bats

    Get PDF
    How multitrophic relationships between wildlife communities and their ectoparasitic vectors interact to shape the diversity of vector-borne microorganisms is poorly understood. Nested levels of dependence among microbes, vectors, and vertebrate hosts may have complicated effects on both microbial community assembly and evolution. We examined Bartonella sequences from European bats and their ectoparasites with a combination of network analysis, Bayesian phylogenetics, tip-association and cophylogeny tests, and linear regression to understand the ecological and evolutionary processes that shape parasite communities. We detected seven bat–ectoparasite–Bartonella communities that can be differentiated based on bat families and roosting patterns. Tips of the Bartonella tree were significantly clustered by host taxonomy and geography. We also found significant evidence of evolutionary congruence between bat host and Bartonella phylogenies, indicating that bacterial species have evolved to infect related bat species. Exploring these ecological and evolutionary associations further, we found that sharing of Bartonella species among bat hosts was strongly associated with host phylogenetic distance and roost sharing and less strongly with geographic range overlap. Ectoparasite sharing between hosts was strongly predicted by host phylogenetic distance, roost sharing, and geographic overlap but had no additive effect on Bartonella sharing. Finally, historical Bartonella host-switching was more frequent for closely related bats after accounting for sampling bias among bat species. This study helps to disentangle the complex ecology and evolution of Bartonella bacteria in bat species and their arthropod vectors. Our work provides insight into the important mechanisms that partition parasite communities among hosts, particularly the effect of host phylogeny and roost sharing, and could help to elucidate the evolutionary patterns of other diverse vector-borne microorganisms

    Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks

    Get PDF
    Background: Anaplasma phagocytophilum is currently regarded as a single species. However, molecular studies indicate that it can be subdivided into ecotypes, each with distinct but overlapping transmission cycle. Here, we evaluate the interactions between and within clusters of haplotypes of the bacterium isolated from vertebrates and ticks, using phylogenetic and network-based methods. Methods: The presence of A. phagocytophilum DNA was determined in ticks and vertebrate tissue samples. A fragment of the groEl gene was amplified and sequenced from qPCR-positive lysates. Additional groEl sequences from ticks and vertebrate reservoirs were obtained from GenBank and through literature searches, resulting in a dataset consisting of 1623 A. phagocytophilum field isolates. Phylogenetic analyses were used to infer clusters of haplotypes and to assess phylogenetic clustering of A. phagocytophilum in vertebrates or ticks. Network-based methods were used to resolve host-vector interactions and their relative importance in the segregating communities of haplotypes. Results: Phylogenetic analyses resulted in 199 haplotypes within eight network-derived clusters, which were allocated to four ecotypes. The interactions of haplotypes between ticks, vertebrates and geographical origin, were visualized and quantified from networks. A high number of haplotypes were recorded in the tick Ixodes ricinus. Communities of A. phagocytophilum recorded from Korea, Japan, Far Eastern Russia, as well as those associated with rodents had no links with the larger set of isolates associated with I. ricinus, suggesting different evolutionary pressures. Rodents appeared to have a range of haplotypes associated with either Ixodes trianguliceps or Ixodes persulcatus and Ixodes pavlovskyi. Haplotypes found in rodents in Russia had low similarities with those recorded in rodents in other regions and shaped separate communities. Conclusions: The groEl gene fragment of A. phagocytophilum provides information about spatial segregation and associations of haplotypes to particular vector-host interactions. Further research is needed to understand the circulation of this bacterium in the gap between Europe and Asia before the overview of the speciation features of this bacterium is complete. Environmental traits may also play a role in the evolution of A. phagocytophilum in ecotypes through yet unknown relationships

    Effect of symmetry reduction on the electronic transitions in polytypic GdAl3(BO3)4:Eu:Tb crystals

    Get PDF
    The existence of a recently described monoclinic phase (C2/c, Z=8) in addition to the well-known Huntite type rhombohedral (R32) polytypic modification of the GdAl3(BO3)4 (GAB) crystal at room temperature provides a unique possibility to investigate the incorporation of rare earth dopants into slightly modified crystal lattice by spectroscopic methods. In these characteristic GAB structures the dopant ions, e.g Tb3+ or Eu3+ , possess slightly different neighbor geometries and local symmetries. The Tb3+:7F6 → 5D4 and Eu3+:7F0,1,2 → 5D0,1,2 electronic transitions were successfully identified in the absorption spectra using polarization, concentration and temperature dependent measurements in both polytypic modifications. The positions of the investigated Tb lines are shifted by up to 10 cm−1 due to symmetry changes. In addition, some of the Eu lines show splittings of about 4–30 cm−1 as a consequence of the change of the local environment. From the room temperature absorption measurements some of the low energy crystal field levels of 7F and 5D states of the Eu3+ ions were successfully determined for both modifications

    Tapasztalatok es motiváltság: magyar középiskolások véleménye az egészségvédő programokról.

    Get PDF
    INTRODUCTION: Health-related attitudes can be encouraged most effectively at young ages. Young generations would require more interactive methods in programs engaged in health promotion. AIM: The aim of the authors was to get an insight into the attitudes, experience and motivation of youngsters in connection with health promotion programs and the community service work. METHOD: The questionnaires were filled in by high school students studying in Budapest and in the countryside (N = 898). RESULTS: 44.4% of the students did not have lessons or extracurricular activities dealing with health promotion. Concerning health promotion programs, youngsters in Budapest had more positive experience, while female students showed a more adoptive attitude. CONCLUSIONS: It was concluded that in one of the most susceptible life stages, many youngsters either do not participate in programs dealing with health promotion, or participate in programs that are within the framework of school subjects or extracurricular activities building on traditional teaching methods. Orv. Hetil., 2016, 157(2), 65-69

    The mineralogical composition of calcium and calcium-magnesium carbonate pedofeatures of calcareous soils in the European prairie ecodivision in Hungary

    Get PDF
    Abstract There is little data on the mineralogy of carbonate pedofeatures in the calcareous soils in Hungary which belong to the European prairie ecodivision. The aim of the present study is to enrich these data. The mineralogical composition of the carbonate pedofeatures from characteristic profiles of the calcareous soils in Hungary was studied by X-ray diffractometry, thermal analysis, SEM combined with microanalysis, and stable isotope determination. Regarding carbonate minerals only aragonite, calcite (+ magnesian calcite) and dolomite (+proto-dolomite) were identified in carbonate grains, skeletons and pedofeatures. The values relating, respectively, to stable isotope compositions (C13, O18) of carbonates in chernozems and in salt-affected soils were in the same range as those for recent soils (latter data reported earlier). There were no considerable differences between the values for the carbonate nodules and tubules from the same horizons, nor were there significant variations between the values of the same pedofeatures from different horizons (BC-C) of the same profile. Thus it can be assumed that there were no considerable changes in conditions of formation. Tendencies were recognized in the changes of (i) carbonate mineral associations, (ii) the MgCO3 content of calcites, (iii) the corrected decomposition temperatures, and (iv) the activation energies of carbonate thermal decompositions among the various substance-regimes of soils. Differences were found in substance-regimes types of soils rather than in soil types

    A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe

    Get PDF
    Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone

    Dermacentor reticulatus: a vector on the rise

    Get PDF
    Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users
    corecore