6,958 research outputs found

    Implications for New Physics from Fine-Tuning Arguments: II. Little Higgs Models

    Full text link
    We examine the fine-tuning associated to electroweak breaking in Little Higgs scenarios and find it to be always substantial and, generically, much higher than suggested by the rough estimates usually made. This is due to implicit tunings between parameters that can be overlooked at first glance but show up in a more systematic analysis. Focusing on four popular and representative Little Higgs scenarios, we find that the fine-tuning is essentially comparable to that of the Little Hierarchy problem of the Standard Model (which these scenarios attempt to solve) and higher than in supersymmetric models. This does not demonstrate that all Little Higgs models are fine-tuned, but stresses the need of a careful analysis of this issue in model-building before claiming that a particular model is not fine-tuned. In this respect we identify the main sources of potential fine-tuning that should be watched out for, in order to construct a successful Little Higgs model, which seems to be a non-trivial goal.Comment: 39 pages, 26 ps figures, JHEP forma

    Large mixing angles for neutrinos from infrared fixed points

    Full text link
    Radiative amplification of neutrino mixing angles may explain the large values required by solar and atmospheric neutrino oscillations. Implementation of such mechanism in the Standard Model and many of its extensions (including the Minimal Supersymmetric Standard Model) to amplify the solar angle, the atmospheric or both requires (at least two) quasi-degenerate neutrino masses, but is not always possible. When it is, it involves a fine-tuning between initial conditions and radiative corrections. In supersymmetric models with neutrino masses generated through the Kahler potential, neutrino mixing angles can easily be driven to large values at low energy as they approach infrared pseudo-fixed points at large mixing (in stark contrast with conventional scenarios, that have infrared pseudo-fixed points at zero mixing). In addition, quasi-degeneracy of neutrino masses is not always required.Comment: 36 pages, 7 ps figure

    Theoretical Constraints on the Vacuum Oscillation Solution to the Solar Neutrino Problem

    Get PDF
    The vacuum oscillation (VO) solution to the solar anomaly requires an extremely small neutrino mass splitting, Delta m^2_{sol}\leq 10^{-10} eV^2. We study under which circumstances this small splitting (whatever its origin) is or is not spoiled by radiative corrections. The results depend dramatically on the type of neutrino spectrum. If m_1^2 \sim m_2^2 \geq m_3^2, radiative corrections always induce too large mass splittings. Moreover, if m_1 and m_2 have equal signs, the solar mixing angle is driven by the renormalization group evolution to very small values, incompatible with the VO scenario (however, the results could be consistent with the small-angle MSW scenario). If m_1 and m_2 have opposite signs, the results are analogous, except for some small (though interesting) windows in which the VO solution may be natural with moderate fine-tuning. Finally, for a hierarchical spectrum of neutrinos, m_1^2 << m_2^2 << m_3^2, radiative corrections are not dangerous, and therefore this scenario is the only plausible one for the VO solution.Comment: 13 pages, LaTeX, 3 ps figures (psfig.sty

    Semiconductor cavity QED: Bandgap induced by vacuum fluctuations

    Full text link
    We consider theoretically a semiconductor nanostructure embedded in one-dimensional microcavity and study the modification of its electron energy spectrum by the vacuum fluctuations of the electromagnetic field. To solve the problem, a non-perturbative diagrammatic approach based on the Green's function formalism is developed. It is shown that the interaction of the system with the vacuum fluctuations of the optical cavity opens gaps within the valence band of the semiconductor. The approach is verified for the case of large photon occupation numbers, proving the validity of the model by comparing to previous studies of the semiconductor system excited by a classical electromagnetic field. The developed theory is of general character and allows for unification of quantum and classical descriptions of the strong light-matter interaction in semiconductor structures

    Self collimation of ultrasound in a 3D sonic crystal

    Full text link
    We present the experimental demonstration of self-collimation (subdiffractive propagation) of an ultrasonic beam inside a three-dimensional sonic crystal. The crystal is formed by two crossed steel cylinders structures in a woodpile-like geometry disposed in water. Measurements of the 3D field distribution show that a narrow beam which diffractively spreads in the absence of the sonic crystal is strongly collimated in propagation inside the crystal, demonstrating the 3D self-collimation effect.Comment: 3 figures, submitted to Applied Physics Letter

    Les locutores de ràdio a Catalunya 1924-1939: perfils, semblances i diferències

    Get PDF
    Les dones que van treballar a l'inici de la ràdio a l'Estat espanyol són les grans oblidades de les diverses històries de la ràdio que s'han anat compilant. Amb aquesta tesi es vol acabar amb aquesta injustícia històrica buscant i entrevistant les dones que des de 1924 fins a 1941 van treballar a la ràdio a Catalunya. L'autora ha aconseguit establir una cronologia exacta de les dones que foren locutores de ràdio en aquesta etapa i donar a conèixer els seus perfils professionals i vitals.The women who worked in Spanish radio at its beginning are the great unsung protagonists — absent in the diverse radio stories complied. The present thesis aims to reverse this historic injustice, at least in part, by locating and interviewing the women who worked in Catalan radio from 1924 to 1941. The author has written an exact chronology of the women who were radio commentators during this period and included their professional and biographical profiles
    • …
    corecore