58 research outputs found

    LUX -- A Laser-Plasma Driven Undulator Beamline

    Full text link
    The LUX beamline is a novel type of laser-plasma accelerator. Building on the joint expertise of the University of Hamburg and DESY the beamline was carefully designed to combine state-of-the-art expertise in laser-plasma acceleration with the latest advances in accelerator technology and beam diagnostics. LUX introduces a paradigm change moving from single-shot demonstration experiments towards available, stable and controllable accelerator operation. Here, we discuss the general design concepts of LUX and present first critical milestones that have recently been achieved, including the generation of electron beams at the repetition rate of up to 5 Hz with energies above 600 MeV and the generation of spontaneous undulator radiation at a wavelength well below 9 nm.Comment: submitte

    Chirp mitigation of plasma-accelerated beams using a modulated plasma density

    Full text link
    Plasma-based accelerators offer the possibility to drive future compact light sources and high-energy physics applications. Achieving good beam quality, especially a small beam energy spread, is still one of the major challenges. For stable transport, the beam is located in the focusing region of the wakefield which covers only the slope of the accelerating field. This, however, imprints a longitudinal energy correlation (chirp) along the bunch. Here, we propose an alternating focusing scheme in the plasma to mitigate the development of this chirp and thus maintain a small energy spread

    Water-Window X-Ray Pulses from a Laser-Plasma Driven Undulator

    Get PDF
    Femtosecond (fs) x-ray pulses are a key tool to study the structure and dynamics of matter on its natural length and time scale. To complement radio-frequency accelerator-based large-scale facilities, novel laser-based mechanisms hold promise for compact laboratory-scale x-ray sources. Laser-plasma driven undulator radiation in particular offers high peak-brightness, optically synchronized few-fs pulses reaching into the few-nanometer (nm) regime. To date, however, few experiments have successfully demonstrated plasma-driven undulator radiation. Those that have, typically operated at single and comparably long wavelengths. Here we demonstrate plasma-driven undulator radiation with octave-spanning tuneability at discrete wavelengths reaching from 13nm to 4nm. Studying spontaneous undulator radiation is an important step towards a plasma-driven free-electron laser. Our specific setup creates a photon pulse, which closely resembles the plasma electron bunch length and charge profile and thus might enable novel methods to characterize the longitudinal electron phase space

    Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009

    Get PDF
    This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis

    Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study

    Get PDF
    Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an increase in the frequency of transcriptional bursts

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    Advanced Beam Dynamics and Diagnostics Concepts for Laser-Plasma Accelerators

    No full text
    Laser-Plasma Accelerators (LPAs) combine a multitude of unique features, which makes them very attractive as drivers for next generation brilliant light sources including compact X-ray free-electron lasers. They provide high accelerating gradients, thereby drastically shrinking the accelerator size, while at the same time the produced electron bunches are intrinsically as short as a few femtoseconds and carry high peak currents. LPA are subject of very active research, yet, the field currently faces the challenge of improving the beam quality, and achieving stable and well-controlled injection and acceleration. This thesis tackles this issue from three different sides. A novel longitudinal phase space diagnostics is proposed that employs the strong fields present in plasma wakefields to streak ultrashort electron bunches. This allows for a temporal resolution down to the attosecond range, enabling direct determination to the current profile and the slice energy spread, both crucial quantities for the performance of free-electron lasers. Furthermore, adiabatic matching sections at the plasma-vacuum boundary are investigated. These can drastically reduce the beam divergence and thereby relax the constraints on the subsequent beam optics. For externally injected beams, the matching sections could even provide the key technology that permits emittance conservation by increasing the matched beam size to a level achievable with currently available magnetic optics. Finally, a new method is studied that allows to modify the wakefield shape. To this end, the plasma density is periodically modulated. One possible application can be to remove the linearly correlated energy spread, or chirp, from the accelerated bunch, which is suspected of being responsible for the main part of the often large energy spread of plasma accelerated beams.Mehrere ihrer Eigenschaften machen Laser-Plasma Beschleuniger zu attraktiven Kandidaten, um die nächste Generation brillanter Lichtquellen, einschließlich kompakter Freie-Elektronen Laser zur Erzeugung hochintensiver Röntgenstrahlung, zu treiben. Sie können extrem große Beschleunigungsgradienten erzeugen, weshalb die Beschleunigerlänge teils um Größenordnungen verkürzt werden kann. Des Weiteren sind die erzeugten Elektronenbunche typischerweise nur einige Femtosekunden lang und weisen hohe Spitzenströme auf. Das Forschungsfeld rund um Laser-Plasma Beschleuniger ist zur Zeit mit der Herausforderung konfrontiert die Strahlqualität der erzeugten Elektronenbunche, sowie die Kontrolle über und die Stabilität der Injektion und der Beschle- unigung zu verbessern. Diese Herausforderungen sind Gegenstand der vorliegenden Dissertation. Mithilfe der starken tansversalen Felder in Laser-Plasma Wakefields kann der longitudinale Phasenraum ultrakurzer Elektronenbunche diagnostiziert werden. Mit einer zeitlichen Auflösung bis in den Attosekundenbereich kann direkt das Stromprofil und der Slice Energy Spread gemessen werden, beides Größen, die entscheidend dafür sind, ob ein Freie-Elektronen Laser mit solchen Bunchen betrieben werden kann. Des Weiteren werden adiabatische Rampen an den Plasma-Vakuum-Übergängen untersucht. Diese reduzieren drastisch die Divergenz des Elektronenstrahls, was die Anforderungen an die folgenden magnetischen Optiken senkt. Gerade für extern injizierte Elektronenbunche könnten adiabatische Rampen sogar unabdingbar sein, um die Emittanz des Strahls zu erhalten, da sie die für die Injektion benötigte Strahlgröße überhaupt erst auf ein Niveau anheben, das mit der verfügbaren Strahloptik erreichbar ist. Drittens wird die Möglichkeit untersucht, die Form des Wakefields mittels periodischer Dichtemodulationen zu beeinflussen. Eine Anwendung hiervon ist die Beseitigung der linearen Korrelation des longitudinalen Phasenraums, welche häufig für den Hauptteil der großen Energiebreite von Laser-Plasma beschleunigten Elektronenbunchen verantwortlich gemacht wird

    Plasma-driven ultrashort bunch diagnostics

    No full text
    • …
    corecore