121 research outputs found

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kcc\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements WkccW_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    Analysis technique for exceptional points in open quantum systems and QPT analogy for the appearance of irreversibility

    Full text link
    We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension nDn_\textrm{D} is given by nD(nD1)n_\textrm{D} (n_\textrm{D} - 1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically 2nC(nC+nD)[2nC(nC+nD)1]2^{n_\textrm{C}} (n_\textrm{C} + n_\textrm{D}) [2^{n_\textrm{C}} (n_\textrm{C} + n_\textrm{D}) - 1] , in which nCn_\textrm{C} is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.Comment: 16 pages, 7 figure

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Good Random Matrices over Finite Fields

    Full text link
    The random matrix uniformly distributed over the set of all m-by-n matrices over a finite field plays an important role in many branches of information theory. In this paper a generalization of this random matrix, called k-good random matrices, is studied. It is shown that a k-good random m-by-n matrix with a distribution of minimum support size is uniformly distributed over a maximum-rank-distance (MRD) code of minimum rank distance min{m,n}-k+1, and vice versa. Further examples of k-good random matrices are derived from homogeneous weights on matrix modules. Several applications of k-good random matrices are given, establishing links with some well-known combinatorial problems. Finally, the related combinatorial concept of a k-dense set of m-by-n matrices is studied, identifying such sets as blocking sets with respect to (m-k)-dimensional flats in a certain m-by-n matrix geometry and determining their minimum size in special cases.Comment: 25 pages, publishe

    Spawning rings of exceptional points out of Dirac cones

    Get PDF
    The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformations of the Dirac cone often reveal intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. These two fields of research are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring of exceptional points, which we call an "exceptional ring." We experimentally demonstrate this concept in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity-time symmetric systems. Our results indicate that the radiation that exists in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain

    Influence of soluble oligomeric aluminum on precipitation in the Al–KOH–H<sub>2</sub>O system

    Full text link
    Combination of solution state Raman and 27Al NMR spectroscopic measurements paired with elemental analysis reveal a strong correlation between the quantity of soluble Al in caustic solutions and the extent of oligomerization.</p

    The controlling role of atmosphere in dawsonite <i>versus</i> gibbsite precipitation from tetrahedral aluminate species

    Full text link
    The transformation of tetrahedrally coordinated potassium aluminate dimer salt to octahedrally coordinated phases, such as gibbsite, is investigated using in situ IR and ex-situ X-ray diffraction, revealing the controlling role of humidity in the presence of CO2.</jats:p
    corecore