365 research outputs found

    Tracing the cosmic growth of supermassive black holes to z ∼ 3 with Herschel

    Get PDF
    We study a sample of Herschel selected galaxies within the Great Observatories Origins Deep Survey-South and the Cosmic Evolution Survey fields in the framework of the Photodetector Array Camera and Spectrometer (PACS) Evolutionary Probe project. Starting from the rich multiwavelength photometric data sets available in both fields, we perform a broad-band spectral energy distribution decomposition to disentangle the possible active galactic nucleus (AGN) contribution from that related to the host galaxy. We find that 37 per cent of the Herschel-selected sample shows signatures of nuclear activity at the 99 per cent confidence level. The probability of revealing AGN activity increases for bright (L_(1−1000) > 10^(11) L_⊙) star-forming galaxies at z > 0.3, becoming about 80 per cent for the brightest (L_(1−1000) > 10^(12) L_⊙) infrared (IR) galaxies at z ≥ 1. Finally, we reconstruct the AGN bolometric luminosity function and the supermassive black hole growth rate across cosmic time up to z ∼ 3 from a far-IR perspective. This work shows general agreement with most of the panchromatic estimates from the literature, with the global black hole growth peaking at z ∼ 2 and reproducing the observed local black hole mass density with consistent values of the radiative efficiency ϵ_(rad) (∼0.07)

    The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field

    Get PDF
    Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over $\sim 2 \ \mathrm{deg}^2oftheCOSMOSfield.WesplittheradiosourcepopulationintoStarFormingGalaxies(SFGs)andActiveGalacticNuclei(AGN),andfurtherseparatetheAGNintoradiativelyefficientandinefficientaccreters.Restrictingouranalysisto of the COSMOS field. We split the radio source population into Star Forming Galaxies (SFGs) and Active Galactic Nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to z<1,wefindSFGshaveabias,, we find SFGs have a bias, b = 1.5 ^{+0.1}_{-0.2},atamedianredshiftof, at a median redshift of z=0.62.Ontheotherhand,AGNaresignificantlymorestronglyclusteredwith. On the other hand, AGN are significantly more strongly clustered with b = 2.1\pm 0.2atamedianredshiftof0.7.ThissupportstheideathatAGNarehostedbymoremassivehaloesthanSFGs.WealsofindlowaccretionrateAGNaremoreclustered( at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low-accretion rate AGN are more clustered (b = 2.9 \pm 0.3)thanhighaccretionrateAGN() than high-accretion rate AGN (b = 1.8^{+0.4}_{-0.5})atthesameredshift() at the same redshift (z \sim 0.7),suggestingthatlowaccretionrateAGNresideinhighermasshaloes.ThissupportspreviousevidencethattherelativelyhotgasthatinhabitsthemostmassivehaloesisunabletobeeasilyaccretedbythecentralAGN,causingthemtobeinefficient.WealsofindevidencethatlowaccretionrateAGNappeartoresideinhalomassesof), suggesting that low-accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low-accretion rate AGN appear to reside in halo masses of M_{h} \sim 3-4 \times 10^{13}h^{-1}MM_{\odot}atallredshifts.Ontheotherhand,theefficientaccretersresideinhaloesof at all redshifts. On the other hand, the efficient accreters reside in haloes of M_{h} \sim 1-2 \times 10^{13}h^{-1}MM_{\odot}atlowredshiftbutcanresideinrelativelylowermasshaloesathigherredshifts.Thiscouldbeduetotheincreasedprevalenceofcoldgasinlowermasshaloesat at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at z \ge 1comparedto compared to z<1$.Comment: 20 pages, 10 figures, 1 table, accepted by MNRA

    Herschel Far-IR counterparts of SDSS galaxies: Analysis of commonly used Star Formation Rate estimates

    Full text link
    We study a hundred of galaxies from the spectroscopic Sloan Digital Sky Survey with individual detections in the Far-Infrared Herschel PACS bands (100 or 160 μ\mum) and in the GALEX Far-UltraViolet band up to z\sim0.4 in the COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4 morphological types. For the star forming and unclassifiable galaxies we calculate dust extinctions from the UV slope, the Hα\alpha/Hβ\beta ratio and the LIR/LUVL_{\rm IR}/L_{\rm UV} ratio. There is a tight correlation between the dust extinction and both LIRL_{\rm IR} and metallicity. We calculate SFRtotal_{total} and compare it with other SFR estimates (Hα\alpha, UV, SDSS) finding a very good agreement between them with smaller dispersions than typical SFR uncertainties. We study the effect of mass and metallicity, finding that it is only significant at high masses for SFRHα_{H\alpha}. For the AGN and composite galaxies we find a tight correlation between SFR and LIR_{IR} (σ\sigma\sim0.29), while the dispersion in the SFR - LUV_{UV} relation is larger (σ\sigma\sim0.57). The galaxies follow the prescriptions of the Fundamental Plane in the M-Z-SFR space.Comment: 24 pages, 23 figures, accepted for publication in MNRA

    Star-forming galaxies versus low- and high-excitation radio AGN in the VLA-COSMOS 3GHz Large Project

    Get PDF
    We study the composition of the faint radio population selected from the VLA-COSMOS 3GHz Large Project, a radio continuum survey performed at 10 cm wavelength. The survey covers the full 2 square degree COSMOS field with mean rms2.3rms\sim2.3 μ\muJy/beam, cataloging 10,899 source components above 5×rms5\times rms. By combining these radio data with UltraVISTA, optical, near-infrared, and Spitzer/IRAC mid-infrared data, as well as X-ray data from the Chandra Legacy, and Chandra COSMOS surveys, we gain insight into the emission mechanisms within our radio sources out to redshifts of z5z\sim5. From these emission characteristics we classify our souces as star forming galaxies or AGN. Using their multi-wavelength properties we further separate the AGN into sub-samples dominated by radiatively efficient and inefficient AGN, often referred to as high- and low-excitation emission line AGN. We compare our method with other results based on fitting of the sources' spectral energy distributions using both galaxy and AGN spectral models, and those based on the infrared-radio correlation. We study the fractional contributions of these sub-populations down to radio flux levels of \sim10 μ\muJy. We find that at 3 GHz flux densities above \sim400 μ\muJy quiescent, red galaxies, consistent with the low-excitation radio AGN class constitute the dominant fraction. Below densities of \sim200 μ\muJy star-forming galaxies begin to constitute the largest fraction, followed by the low-excitation, and X-ray- and IR-identified high-excitation radio AGN.Comment: 7 pages, 3 figures, The many facets of extragalactic radio surveys: towards new scientific challenges, Bologna 20-23 October 201

    An Eddington ratio-driven origin for the LX- M∗relation in quiescent and star-forming active galaxies

    Get PDF
    A mild correlation exists in active galaxies between the mean black hole accretion, as traced by the mean X-ray luminosity and the host galaxy stellar mass M∗, characterised by a normalization steadily decreasing with cosmic time and lower in more quiescent galaxies. We create comprehensive semi-empirical mock catalogues of active black holes to pin down which parameters control the shape and evolution of the - M∗ relation of X-ray-detected active galaxies. We find that the normalization of the - M∗ relation is largely independent of the fraction of active galaxies (the duty cycle), but strongly dependent on the mean Eddington ratio, when adopting a constant underlying MBH - M∗ relation as suggested by observational studies. The data point to a decreasing mean Eddington ratio with cosmic time and with galaxy stellar mass at fixed redshift. Our data can be reproduced by black holes and galaxies evolving on similar MBH - M∗ relations but progressively decreasing their average Eddington ratios, mean X-ray luminosities, and specific star formation rates, when moving from the starburst to the quiescent phase. Models consistent with the observed - M∗ relation and independent measurements of the mean Eddington ratios are characterised by MBH - M∗ relations lower than those derived from dynamically measured local black holes. Our results point to the - M∗ relation as a powerful diagnostic to: (1) probe black hole-galaxy scaling relations and the level of accretion on to black holes; (2) efficiently break the degeneracies between duty cycles and accretion rates in cosmological models of black holes

    Average radio spectral energy distribution of highly star-forming galaxies

    Get PDF
    The infrared-radio correlation (IRRC) offers a way to assess star formation from radio emission. Multiple studies found the IRRC to decrease with increasing redshift. This may in part be due to the lack of knowledge about the possible radio spectral energy distributions (SEDs) of star-forming galaxies. We constrain the radio SED of a complete sample of highly star-forming galaxies (SFR &gt; 100 M?/ yr) based on the VLA-COSMOS 1.4 GHz Joint and 3 GHz Large Project catalogs. We reduce archival GMRT 325 MHz and 610 MHz observations, broadening the rest-frame frequency range to 0.3-15 GHz. Employing survival analysis and fitting a double power law SED, we find that the slope steepens from a spectral index of a1 = 0.51±0.04 below 4.5 GHz to a2 = 0.98±0.07 above 4.5 GHz. Our results suggest that the use of a K-correction assuming a single power-law radio SED for star forming galaxies is likely not the root cause of the IRRC trend

    HST grism spectroscopy of z ∼3 massive quiescent galaxies: Approaching the metamorphosis

    Get PDF
    Tracing the emergence of the massive quiescent galaxy (QG) population requires the build-up of reliable quenched samples by distinguishing these systems from red, dusty star-forming sources. We present Hubble Space Telescope WFC3/G141 grism spectra of ten quiescent galaxy candidates selected at 2.5 &lt; z &lt; 3.5 in the COSMOS field. Spectroscopic confirmation for the whole sample is obtained within one to three orbits through the detection of strong spectral breaks and Balmer absorption lines. When their spectra are combined with optical to near-infrared photometry, star-forming solutions are formally rejected for the entire sample. Broad spectral indices are consistent with the presence of young A-type stars, which indicates that the last major episode of star formation has taken place no earlier than ∼300-800 Myr prior to observation. This confirms clues from their post-starburst UVJ colors. Marginalising over three different slopes of the dust attenuation curve, we obtain young mass-weighted ages and an average peak star formation rate (SFR) of ∼103 M yr-1 at zformation ∼ 3.5. Although mid- and far-IR data are too shallow to determine the obscured SFR on a galaxy-by-galaxy basis, the mean stacked emission from 3 GHz data constrains the level of residual-obscured SFR to be globally below 50 M yr-1, three times below the scatter of the coeval main sequence. Alternatively, the very same radio detection suggests a widespread radio-mode feedback by active galactic nuclei (AGN) four times stronger than in z ∼ 1.8 massive QGs. This is accompanied by a 30% fraction of X-ray luminous AGN with a black hole accretion rate per unit SFR enhanced by a factor of ∼30 with respect to similarly massive QGs at lower redshift. The average compact, high Sérsic index morphologies of the galaxies in this sample, coupled with their young mass-weighted ages, suggest that the mechanisms responsible for the development of a spheroidal component might be concomitant with (or preceding) those causing their quenching
    corecore