6,084 research outputs found
Orbital alignment and star-spot properties in the WASP-52 planetary system
We report 13 high-precision light curves of eight transits of the exoplanet WASP-52 b, obtained by using four medium-class telescopes, through different filters, and adopting the defocussing technique. One transit was recorded simultaneously from two different observatories and another one from the same site but with two different instruments, including a multiband camera. Anomalies were clearly detected in five light curves and modelled as star-spots occulted by the planet during the transit events. We fitted the clean light curves with the jktebop code, and those with the anomalies with the prism+gemc codes in order to simultaneously model the photometric parameters of the transits and the position, size and contrast of each star-spot. We used these new light curves and some from the literature to revise the physical properties of the WASP-52 system. Star-spots with similar characteristics were detected in four transits over a period of 43 d. In the hypothesis that we are dealing with the same star-spot, periodically occulted by the transiting planet, we estimated the projected orbital obliquity of WASP-52 b to be λ = 3â.8.â ± 8.â4. We also determined the true orbital obliquity, Ï = 20° ± 50°, which is, although very uncertain, the first measurement of Ï purely from star-spot crossings. We finally assembled an optical transmission spectrum of the planet and searched for variations of its radius as a function of wavelength. Our analysis suggests a flat transmission spectrum within the experimental uncertainties
Effect of Beam Dynamics Processes in the Low Energy Ring ThomX
As part of the R\&D for the 50 MeV ThomX Compton source project, we have
studied the effect of several beam dynamics processes on the evolution of the
beam in the ring. The processes studied include among others Compton
scattering, intrabeam scattering, coherent synchrotron radiation. We have
performed extensive simulations of a full injection/extraction cycle (400000
turns). We show how each of these processes degrades the flux of photons
produced and how a feedback system contributes to recovering most of the flux.Comment: Submitted to IPAC'14, WEPRO00
A New Fast Silicon Photomultiplier Photometer
The realization of low-cost instruments with high technical performance is a
goal which deserves some efforts in an epoch of fast technological
developments: indeed such instruments can be easily reproduced and therefore
allow to open new research programs in several Observatories. We realized a
fast optical photometer based on the SiPM technology, using commercially
available modules. Using low-cost components we have developed a custom
electronic chain to extract the signal produced by a commercial MPPC module
produced by Hamamatsu, in order to obtain sub millisecond sampling of the light
curve of astronomical sources, typically pulsars. In the early February 2011 we
observed the Crab Pulsar at the Cassini telescope with our prototype
photometer, deriving its period, power spectrum and shape of its light curve in
very good agreement with the results obtained in the past with other
instruments.Comment: Accepted for Publications of the Astronomical Society of Pacific
(PASP), 8 pages, 8 figure
Physical properties, starspot activity, orbital obliquity, and transmission spectrum of the Qatar-2 planetary system from multi-colour photometry
We present seventeen high-precision light curves of five transits of the
planet Qatar-2b, obtained from four defocussed 2m-class telescopes. Three of
the transits were observed simultaneously in the SDSS griz passbands using the
seven-beam GROND imager on the MPG/ESO 2.2-m telescope. A fourth was observed
simultaneously in Gunn grz using the CAHA 2.2-m telescope with BUSCA, and in r
using the Cassini 1.52-m telescope. Every light curve shows small anomalies due
to the passage of the planetary shadow over a cool spot on the surface of the
host star. We fit the light curves with the prism+gemc model to obtain the
photometric parameters of the system and the position, size and contrast of
each spot. We use these photometric parameters and published spectroscopic
measurements to obtain the physical properties of the system to high precision,
finding a larger radius and lower density for both star and planet than
previously thought. By tracking the change in position of one starspot between
two transit observations we measure the orbital obliquity of Qatar-2 b to be
4.3 \pm 4.5 degree, strongly indicating an alignment of the stellar spin with
the orbit of the planet. We calculate the rotation period and velocity of the
cool host star to be 11.4 \pm 0.5 d and 3.28 \pm 0.13 km/s at a colatitude of
74 degree. We assemble the planet's transmission spectrum over the 386-976 nm
wavelength range and search for variations of the measured radius of Qatar-2 b
as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh
scattering in the blue.Comment: 20 pages, 14 figures, to appear in Monthly Notices of the Royal
Astronomical Societ
The central structure of Broad Absorption Line QSOs: observational characteristics in the cm-mm wavelength domain
Accounting for ~20% of the total QSO population, Broad Absorption Line QSOs
are still an unsolved problem in the AGN context. They present wide troughs in
the UV spectrum, due to material with velocities up to 0.2 c toward the
observer. The two models proposed in literature try to explain them as a
particular phase of the evolution of QSOs or as normal QSOs, but seen from a
particular line of sight.
We built a statistically complete sample of Radio-Loud BAL QSOs, and carried
out an observing campaign to piece together the whole spectrum in the cm
wavelength domain, and highlight all the possible differences with respect to a
comparison sample of Radio-Loud non-BAL QSOs. VLBI observations at high angular
resolution have been performed, to study the pc-scale morphology of these
objects. Finally, we tried to detect a possible dust component with
observations at mm-wavelengths.
Results do not seem to indicate a young age for all BAL QSOs. Instead a
variety of orientations and morphologies have been found, constraining the
outflows foreseen by the orientation model to have different possible angles
with respect to the jet axis
Implementing Session Centered Calculi
Recently, specific attention has been devoted to the development of service oriented process calculi. Besides the foundational aspects, it is also interesting to have prototype implementations for them in order to assess usability and to minimize the gap between theory and practice. Typically, these implementations are done in Java taking advantage of its mechanisms supporting network applications. However, most of the recurrent features of service oriented applications are re-implemented from scratch. In this paper we show how to implement a service oriented calculus, CaSPiS (Calculus of Services with Pipelines and Sessions) using the Java framework IMC, where recurrent mechanisms for network applications are already provided. By using the session oriented and pattern matching communication mechanisms provided by IMC, it is relatively simple to implement in Java all CaSPiS abstractions and thus to easily write the implementation in Java of a CaSPiS process
Metric Perturbation Approach to Gravitational Waves in Isotropic Cosmologies
Gravitational waves in isotropic cosmologies were recently studied using the
gauge-invariant approach of Ellis-Bruni. We now construct the linearised metric
perturbations of the background Robertson-Walker space-time which reproduce the
results obtained in that study. The analysis carried out here also facilitates
an easy comparison with Bardeen.Comment: 29 pages, Latex file, accepted for publication in Physical Review
Hard - X-rays selected Active Galactic Nuclei. I. A radio view at high-frequencies
A thorough study of radio emission in Active Galactic Nuclei (AGN) is of
fundamental importance to understand the physical mechanisms responsible for
the emission and the interplay between accretion and ejection processes. High
frequency radio observations can target the nuclear contribution of smaller
emitting regions and are less affected by absorption. We present JVLA 22 and 45
GHz observations of 16 nearby (0.003z0.3) hard - X-rays selected AGN
at the (sub)-kpc scale with tens uJy beam sensitivity. We detected 15/16
sources, with flux densities ranging from hundreds uJy beam to tens Jy
(specific luminosities from 10 to 10 at
22 GHz). All detected sources host a compact core, with 8 being core-dominated
at either frequencies, the others exhibiting also extended structures. Spectral
indices range from steep to flat/inverted. We interpret this evidence as either
due to a core+jet system (6/15), a core accompanied by surrounding star
formation (1/15), to a jet oriented close to the line of sight (3/15), to
emission from a corona or the base of a jet (1/15), although there might be
degeneracies between different processes. Four sources require more data to
shed light on their nature. We conclude that, at these frequencies, extended,
optically-thin components are present together with the flat-spectrum core. The
relation is roughly followed, indicating a possible
contribution to radio emission from a hot corona. A weakly significant
correlation between radio core (22 and 45 GHz) and X-rays luminosities is
discussed in the light of an accretion-ejection framework.Comment: Accepted for publication on MNRA
Simultaneous follow-up of planetary transits: revised physical properties for the planetary systems HAT-P-16 and WASP-21
Context. By now more than 300 planets transiting their host star have been
found, and much effort is being put into measuring the properties of each
system. Light curves of planetary transits often contain deviations from a
simple transit shape, and it is generally difficult to differentiate between
anomalies of astrophysical nature (e.g. starspots) and correlated noise due to
instrumental or atmospheric effects. Our solution is to observe transit events
simultaneously with two telescopes located at different observatories. Aims.
Using this observational strategy, we look for anomalies in the light curves of
two transiting planetary systems and accurately estimate their physical
parameters. Methods. We present the first photometric follow-up of the
transiting planet HAT-P-16 b, and new photometric observations of WASP-21 b,
obtained simultaneously with two medium-class telescopes located in different
countries, using the telescope defocussing technique. We modeled these and
other published data in order to estimate the physical parameters of the two
planetary systems. Results. The simultaneous observations did not highlight
particular features in the light curves, which is consistent with the low
activity levels of the two stars. For HAT-P-16, we calculated a new ephemeris
and found that the planet is 1.3 \sigma colder and smaller (Rb = 1.190 \pm
0.037 RJup) than the initial estimates, suggesting the presence of a massive
core. Our physical parameters for this system point towards a younger age than
previously thought. The results obtained for WASP-21 reveal lower values for
the mass and the density of the planet (by 1.0 \sigma and 1.4 \sigma
respectively) with respect to those found in the discovery paper, in agreement
with a subsequent study. We found no evidence of any transit timing variations
in either system.Comment: 8 pages, 6 figures, accepted for publication in A&
- âŠ