29 research outputs found

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction

    Scratch resistance of PEG-impregnated green wood : a method for evaluation of swollen wood properties

    No full text
    This work proposes an experimental approach to study the scratch resistance of green wood under the effect of polyethylene glycol (PEG) impregnation. To this end, small-scale green spruce samples are stabilized against water by using the technique of PEG impregnation to prevent water to seep out of the wood during experimental tests. Scratches are performed in the radial-longitudinal and tangential-longitudinal planes of cubic wood samples by using two different indenter tips under constant and progressive normal loads. Scratch testing has previously been used mainly to characterize the abrasion resistance of coatings. Since PEG simulates the swelling effect of water in wood, this paper shows that the scratch tests on PEG-impregnated green wood can be adopted as a simple technique to understand the scratch resistance in swollen wood and the related mechanisms. The scratch test results, quantified in terms of frictional forces and permanent residual depths, reveal that the scratch resistance of wood samples depends on their PEG concentration and density, as well as on the indenter tip size and material, and on the normal force and direction during scratching. Due to the lack of literature on the scratch tests of wood, the results presented in this paper will serve as a scientific reference for future studies on the scratch resistance of untreated or treated dry wood and other wood-based products

    The influence of chemical degradation and polyethylene glycol on moisture-dependent cell wall properties of archeological wooden objects: a case study of the Vasa shipwreck

    Get PDF
    Cell wall measures allow for direct assessment of wood modification without the adverse effect of varying density and microstructure. In this study, cell wall properties of recent and archeological oak wood from the Vasa shipwreck were investigated for cell wall stiffness, hardness and creep with respect to effects of chemical degradation, impregnation with a preservation agent, namely polyethylene glycol, and moisture. For this purpose, nanoindentation tests were performed at varying relative humidity, leading to different moisture contents in the wood samples. Concurrently, microstructural and chemical characterization of the material was conducted. Impregnated and untreated recent oak wood showed a softening effect of both moisture and preservation agent at the wood cell wall level. On the contrary, increased stiffness was found for non-impregnated Vasa oak, which can be explained by aging-related modifications in cell wall components. These effects were counteracted by the softening effect of polyethylene glycol in the impregnated Vasa material, where a lower overall stiffness was measured. The reverse effect of the preservation agent and moisture, namely increased indentation creep of the cell wall material, was revealed. The loss of acetyl groups in the hemicelluloses explained the decreased hygroscopicity of the Vasa oak. In the impregnated Vasa oak, this effect seemed to be partly counteracted by the presence of low-molecular polyethylene glycol contributing to higher hygroscopicity of the cell wall. Thus, the higher overall sorptive capacity of the impregnated Vasa material, with respect to the non-impregnated material, was detected, which has resulted in a sorptive behavior similar to that of recent oak wood. The proposed approach requires only small amounts of material, making it especially suitable for application to precious historical wooden artifacts.2
    corecore