2,380 research outputs found

    Classical Dynamical Systems from q-algebras:"cluster" variables and explicit solutions

    Full text link
    A general procedure to get the explicit solution of the equations of motion for N-body classical Hamiltonian systems equipped with coalgebra symmetry is introduced by defining a set of appropriate collective variables which are based on the iterations of the coproduct map on the generators of the algebra. In this way several examples of N-body dynamical systems obtained from q-Poisson algebras are explicitly solved: the q-deformed version of the sl(2) Calogero-Gaudin system (q-CG), a q-Poincare' Gaudin system and a system of Ruijsenaars type arising from the same (non co-boundary) q-deformation of the (1+1) Poincare' algebra. Also, a unified interpretation of all these systems as different Poisson-Lie dynamics on the same three dimensional solvable Lie group is given.Comment: 19 Latex pages, No figure

    Binary trees, coproducts, and integrable systems

    Get PDF
    We provide a unified framework for the treatment of special integrable systems which we propose to call "generalized mean field systems". Thereby previous results on integrable classical and quantum systems are generalized. Following Ballesteros and Ragnisco, the framework consists of a unital algebra with brackets, a Casimir element, and a coproduct which can be lifted to higher tensor products. The coupling scheme of the iterated tensor product is encoded in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new appendices adde

    Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature

    Full text link
    An infinite family of classical superintegrable Hamiltonians defined on the N-dimensional spherical, Euclidean and hyperbolic spaces are shown to have a common set of (2N-3) functionally independent constants of the motion. Among them, two different subsets of N integrals in involution (including the Hamiltonian) can always be explicitly identified. As particular cases, we recover in a straightforward way most of the superintegrability properties of the Smorodinsky-Winternitz and generalized Kepler-Coulomb systems on spaces of constant curvature and we introduce as well new classes of (quasi-maximally) superintegrable potentials on these spaces. Results here presented are a consequence of the sl(2) Poisson coalgebra symmetry of all the Hamiltonians, together with an appropriate use of the phase spaces associated to Poincare and Beltrami coordinates.Comment: 12 page

    Universal R-matrix for null-plane quantized Poincar{\'e} algebra

    Full text link
    The universal R{\cal R}--matrix for a quantized Poincar{\'e} algebra P(3+1){\cal P}(3+1) introduced by Ballesteros et al is evaluated. The solution is obtained as a specific case of a formulated multidimensional generalization to the non-standard (Jordanian) quantization of sl(2)sl(2).Comment: 9 pages, LaTeX, no figures. The example on page 5 has been supplemented with the full descriptio

    Evolution of the universality class in slightly diluted (1>p>0.8) Ising systems

    Full text link
    The crossover of a pure (undiluted) Ising system (spin per site probability p=1) to a diluted Ising system (spin per site probability p<0.8) is studied by means of Monte Carlo calculations with p ranging between 1 and 0.8 at intervals of 0.025. The evolution of the self averaging is analyzed by direct determination of the normalized square widths for magnetization and susceptibility as a function of p. We find a monotonous and smooth evolution from the pure to the randomly diluted universality class. The p-dependent transition is found to be independent of the size (L). This property is very convenient for extrapolation towards the randomly diluted universality class avoiding complications resulting from finite size effects.Comment: 15 pages, 6 figures, RevTe

    Superintegrability on sl(2)-coalgebra spaces

    Full text link
    We review a recently introduced set of N-dimensional quasi-maximally superintegrable Hamiltonian systems describing geodesic motions, that can be used to generate "dynamically" a large family of curved spaces. From an algebraic viewpoint, such spaces are obtained through kinetic energy Hamiltonians defined on either the sl(2) Poisson coalgebra or a quantum deformation of it. Certain potentials on these spaces and endowed with the same underlying coalgebra symmetry have been also introduced in such a way that the superintegrability properties of the full system are preserved. Several new N=2 examples of this construction are explicitly given, and specific Hamiltonians leading to spaces of non-constant curvature are emphasized.Comment: 12 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    From Quantum Universal Enveloping Algebras to Quantum Algebras

    Full text link
    The ``local'' structure of a quantum group G_q is currently considered to be an infinite-dimensional object: the corresponding quantum universal enveloping algebra U_q(g), which is a Hopf algebra deformation of the universal enveloping algebra of a n-dimensional Lie algebra g=Lie(G). However, we show how, by starting from the generators of the underlying Lie bialgebra (g,\delta), the analyticity in the deformation parameter(s) allows us to determine in a unique way a set of n ``almost primitive'' basic objects in U_q(g), that could be properly called the ``quantum algebra generators''. So, the analytical prolongation (g_q,\Delta) of the Lie bialgebra (g,\delta) is proposed as the appropriate local structure of G_q. Besides, as in this way (g,\delta) and U_q(g) are shown to be in one-to-one correspondence, the classification of quantum groups is reduced to the classification of Lie bialgebras. The su_q(2) and su_q(3) cases are explicitly elaborated.Comment: 16 pages, 0 figures, LaTeX fil
    corecore