534 research outputs found

    Charged lepton-nucleus inelastic scattering at high energies

    Full text link
    The composite model is constructed to describe inelastic high-energy scattering of muons and taus in standard rock. It involves photonuclear interactions at low Q2Q^2 as well as moderate Q2Q^2 processes and the deep inelastic scattering (DIS). In the DIS region the neutral current contribution is taken into consideration. Approximation formulas both for the muons and tau energy loss in standard rock are presented for wide energy range.Comment: 5 pages, 4 figures. Presented at 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Submitted to Int.J.Mod.Phys.

    Incorporating Prior Knowledge on Class Probabilities into Local Similarity Measures for Intermodality Image Registration

    Get PDF
    We present a methodology for incorporating prior knowledge on class probabilities into the registration process. By using knowledge from the imaging modality, pre-segmentations, and/or probabilistic atlases, we construct vectors of class probabilities for each image voxel. By defining new image similarity measures for distribution-valued images, we show how the class probability images can be nonrigidly registered in a variational framework. An experiment on nonrigid registration of MR and CT full-body scans illustrates that the proposed technique outperforms standard mutual information (MI) and normalized mutual information (NMI) based registration techniques when measured in terms of target registration error (TRE) of manually labeled fiducials

    The indication for 40^{40}K geo-antineutrino flux with Borexino phase-III data

    Full text link
    We provide the indication of high flux of 40^{40}K geo-antineutrino and geo-neutrino (40^{40}K-geo-(νˉ+ν\bar{\nu} + \nu)) with Borexino Phase III data. This result was obtained by introducing a new source of single events, namely 40^{40}K-geo-(νˉ+ν\bar{\nu} + \nu) scattering on electrons, in multivariate fit analysis of Borexino Phase III data. Simultaneously we obtained the count rates of events from 7^7Be, peppep and CNO solar neutrinos. These count rates are consistent with the prediction of the Low metallicity Sun model SSM B16-AGSS09. MC pseudo-experiments showed that the case of High metallicity Sun and absence of 40^{40}K-geo-(νˉ+ν\bar{\nu} + \nu) can not imitate the result of multivariate fit analysis of Borexino Phase III data with introducing 40^{40}K-geo-(νˉ+ν\bar{\nu} + \nu) events. We also provide arguments for the high abundance of potassium in the Earth.Comment: 17 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2202.08531 We have corrected and expanded the section on radiogenic heat of the Earth. Improved the quality of drawings. The results of the study are partially described in L. B. Bezrukov, I. S. Karpikov, A. K. Mezhokh, S. V. Silaeva and V. V. Sinev, Bulletin of the Russian Federation. 87 (7), 972 (2023

    Inflation with Non-minimal Gravitational Couplings and Supergravity

    Get PDF
    We explore in the supergravity context the possibility that a Higgs scalar may drive inflation via a non-minimal coupling to gravity characterised by a large dimensionless coupling constant. We find that this scenario is not compatible with the MSSM, but that adding a singlet field (NMSSM, or a variant thereof) can very naturally give rise to slow-roll inflation. The inflaton is necessarily contained in the doublet Higgs sector and occurs in the D-flat direction of the two Higgs doublets.Comment: 13 pages, 1 figur

    Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection

    Full text link
    In this work we report the performances and the chemical and physical properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd up to ~0.1%, and the results of a 2 year long stability survey. In particular we have monitored the amount of both Gd and primary fluor actually in solution, the optical and fluorescent properties of the Gd-doped liquid scintillator (GdLS) and its performances as a neutron detector, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the target being continuously monitored. After two years from the doping time the performances of the Gd-doped liquid scintillator do not show any hint of degradation and instability; this conclusion comes both from the laboratory measurements and from the "in-tank" measurements. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period

    Muon-Induced Background Study for Underground Laboratories

    Full text link
    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from ∼\sim1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.Comment: 18 pages, 28 figure

    Neutron production by cosmic-ray muons at shallow depth

    Get PDF
    The yield of neutrons produced by cosmic ray muons at a shallow depth of 32 meters of water equivalent has been measured. The Palo Verde neutrino detector, containing 11.3 tons of Gd loaded liquid scintillator and 3.5 tons of acrylic served as a target. The rate of one and two neutron captures was determined. Modeling the neutron capture efficiency allowed us to deduce the total yield of neutrons Ytot=(3.60±0.09±0.31)×10−5 Y_{tot} = (3.60 \pm 0.09 \pm 0.31) \times 10^{-5} neutrons per muon and g/cm2^2. This yield is consistent with previous measurements at similar depths.Comment: 12 pages, 3 figure
    • …
    corecore