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Abstract. We present a methodology for incorporating prior knowledge
on class probabilities into the registration process. By using knowledge
from the imaging modality, pre-segmentations, and/or probabilistic at-
lases, we construct vectors of class probabilities for each image voxel. By
defining new image similarity measures for distribution-valued images,
we show how the class probability images can be nonrigidly registered in
a variational framework. An experiment on nonrigid registration of MR
and CT full-body scans illustrates that the proposed technique outper-
forms standard mutual information (MI) and normalized mutual infor-
mation (NMI) based registration techniques when measured in terms of
target registration error (TRE) of manually labeled fiducials.

1 Introduction

Intermodality image registration describes the task of aligning two images that
have been acquired using different modalities and thus have values with different
meanings. Typical registration methods are designed in terms of three compo-
nents: the allowable space of geometric transformations, the similarity measure
relating two images, and the optimization technique for finding the optimal value
of the similarity measure over the space of allowable transformations.

Mutual information (MI) [1, 2] is one of the most commonly used similar-
ity measures in intermodality image registration. The underlying assumption is
that if images values are treated as realizations of some underlying probabil-
ity distribution function, then the mutual information between both images is
maximized when they are aligned. The reason for the success of MI and related
measures such as normalized mutual information (NMI) [3] lies in the fact that
these measures do not make any underlying assumptions about the modalities.
This allows them to be used for a whole range of inter-modality registration
problems. In practice, however, most volume registration problems in medical
imaging applications use images acquired from a limited number of modalities,
including MR, CT, PET, and Ultrasound. When prior knowledge about the im-
ages, modalities, or optimal transformations is available, this knowledge can be



exploited to enable better registration results than would be possible with MI
or NMI.

Prior knowledge has been previously exploited in a number of ways for im-
age registration [4–9]. Ashburner et al. [4] have shown how incorporating prior
knowledge about an object’s shape and scale can significantly improve accuracy
and reliability for affine registration. Leventon and Grimson [5], Guetter et al. [6],
Chung et al. [7], and Sabuncu and Ramadge [8] have all proposed variations on
the idea of learning the optimal joint distribution from exemplar aligned images
and then designing a similarity measure that reflects the difference between the
learned joint distribution and an observed joint distribution. Lee et al. [9] have
focused directly on learning an optimal similarity measure for a specific pair of
image modalities, assuming exemplar aligned images from those modalities are
provided.

While these techniques are useful for certain intermodal registration prob-
lems, they seem to rely directly on the image intensities; hence, they may not be
directly generalizable to all types of intermodal registration. Whereas CT scan-
ners are calibrated to yield images with an accuracy of within a few Hounsfield
units, this is not possible with MR scanners and MR typical field inhomogeneities
lead to severe intensity bias. Furthermore, it is not necessarily true that exem-
plar aligned images will always be available; this is especially true in situations
when nonrigid registration is required.

Other previous work has attempted to use prior information in the form of
tissue class probabilities to aid in registration. D’Agostino et al. [10] describe
how to align images by minimizing the Kullback-Leibler divergence between the
actual joint class distribution and an ideal joint class distribution, although their
formulation assumes that individual class probabilities in pairs of correspond-
ing voxel positions in two images are independent. Lorenzen et al. [11] avoid
making this assumption and propose an approach based on local KL divergence.
Although Lorenzen’s approach is applicable for the more general problem of
multiple image registration, it requires the additional step of atlas construction
even when only two images must be registered.

In this paper, we show how to design a nonrigid registration algorithm based
on vector valued images. Such a nonrigid registration algorithm exploits prior
knowledge about the imaging modalities, but unlike other techniques, it does
not require exemplar aligned images, independence assumptions, or atlas con-
struction. We compare the performance of the proposed nonrigid registration
technique versus standard MI-based registration on full-body MR/CT images,
measuring the results in terms of target registration error (TRE) on manually
labeled fiducial points.

2 Prior Knowledge on Class Probabilities

In medical images, the intensity at a given voxel depends on the underlying tissue
class at the voxel’s position. If it is possible to infer the underlying tissue class
at each position in an image, this knowledge could potentially be exploited by



Fig. 1. Estimating class probabilities using Bayes’ rule and pre-segmented images.
Red/blue colors indicate high/low probabilities, respectfully.

a registration algorithm. In many situations, however, it is difficult to uniquely
identify the underlying tissue class at a voxel solely from the intensity value at
that voxel. This can be remedied by using additional information that may be
available directly from the imaging device, from a pre-segmentation, or from a
probabilistic atlas.

One example of additional information that may be provided directly from an
imaging device is the phase information in MR imaging that is available after MR
reconstruction [12]. This information is not usually used for diagnosis, but may
be useful in inferring the underlying tissue class. If no additional direct source
of information is available, class probabilities can be estimated based on the
intensity values by using pre-segmented images. Assuming that pre-segmented
images and the image to be registered have similar intensity characteristics, the
probability that a particular voxel has tissue class C, given the voxel intensity
I, is given by p(C|I). According to Bayes’ rule, p(C|I) ∝ p(I|C) · p(C), where
p(C) is a prior probability on how often class C is expected to occur. Figure 1
provides an illustration of the process of estimating class probabilities at each
voxel in a full-body MR scan.

Alternatively, if there is no direct source of additional information available,
and pre-segmentation is not desirable, probabilistic atlases can be used to provide
prior information about which tissue class is expected at different positions in
the patient [13, 14]. Since the anatomy of different subjects shows structural sim-
ilarities, the images of different subjects can be brought into alignment through
intersubject registration. For example, a template MR image for which tissue
labels are available can be registered to a patient MR image. Applying the same
transformation on the label image yields a tissue label prediction for the patient
MR image. Performing this procedure for several template MR image and label
pairs can be used to derive a position-depedendent prior probability p(C|X).



This prior probability can be combined with the intensity-derived class estimate
using Bayes’ rule:

p(C|I,X) ∝ p(C|X) · p(I|C) (1)

Whether estimated directly from the imaging modality, or indirectly from
pre-segmented images or probabilistic atlases, once class probabilities have been
derived for each voxel, they can be used to form distribution-valued images.
These distribution-valued images can be subsequently used for registration, hope-
fully yielding better results than registration based solely on the original intensity-
valued images.

3 Nonrigid Registration Preliminaries

In this section, we describe a variational framework for registering two images,
using MI or NMI as a similarity measure. In the next section, we will extend
this framework and introduce new similarity measures to allow for vector-valued
and distribution-valued images.

Consider two images, a reference image R and a floating image F , both
as functions mapping Ω ⊆ Rd 7→ RN . Define a deformation Φ : Rd 7→ Rd by
Φ(x) = x−u (x), and call u the displacement. The general form of the variational
registration problem is given by:

min
u

E(R,F,u) := S(u) + αJ (R,Fu) , (2)

where J is a similarity measure that quantifies the similarity between the refer-
ence image R and the deformed floating image Fu := F (Φ), S is a regularizer
that ensures that the minimization problem is well-posed and that the solution
is smooth in some sense, and α is a weighting parameter.

In this paper, we will assume the use of the curvature regularizer [15]:

S(u) :=
∫
Ω

d∑
j=1

(∆uj(x))2dx . (3)

Normally, variational registration proceeds by identifying the Euler-Lagrange
equations associated with (2) and embedding them in an artificial time. When
the curvature regularizer is used, this process yields the evolution equation:

∂tu(x, t) +∆2u(x, t) = −αf(x, R, Fu) , x ∈ Ω, t > 0, (4)

u(x, 0) = u(0)(x) , (5)

where u(0)(x) is typically chosen to be 0, and where Dirichlet or Neumann bound-
ary conditions are typically imposed on the boundary of Ω. The equilibrium
solution of (4)–(5) yields a stationary point of (2).

To handle large deformations, we follow a strategy similar to fluid registration
[16], and solve the evolution equation in terms of the velocity field v instead of



the displacement field u; i.e.,

∂tv(x, t) +∆2v(x, t) = −αf(x, R, Fu) , x ∈ Ω, t > 0, (6)
v(x, 0) = 0 , (7)

where the velocity and displacement are related by the material derivative:

v(x, t) = ∂tu(x, t) + (∇u(x, t))T v(x, t) . (8)

The vector field f(x, R, Fu) that forms the nonhomogeneous term in (4) is
called the force vector, and it arises from the Gâteaux derivative of J . Force
vectors can typically be determined analytically from the similarity measure at
hand. For the MI and NMI, we first present the similarity measures and then
their corresponding force vectors. The MI and NMI are defined by:

MI(R,Fu) := H(R) +H(Fu)−H(R,Fu) , (9)

NMI(R,Fu) :=
H(R) +H(Fu)
H(R,Fu)

, (10)

where H(A) and H(A,B) are the marginal and joint entropies, defined by:

H(A) = −
∫ ∞
−∞

pA(a) log pA(a) da , (11)

H(A,B) = −
∫ ∞
−∞

∫ ∞
−∞

pA,B(a, b) log pA,B(a, b) dadb , (12)

and where pA(a) and pA,B(a, b) are the values of the probability density func-
tion of A at a, and the joint probability density function of (A,B) at (a, b),
respectively.

The corresponding force vectors for MI and NMI are given by:

fMI(x, R, Fu) = PH(x;Fu)− PH(x;R,Fu) , (13)

fNMI(x, R, Fu) =
PH(x;Fu)−NMI(R,Fu)PH(x;R,Fu)

H(R,Fu)
, (14)

where

PH(x;Fu) =
1
|Ω|

(
p

′

Fu(Fu(x))
pFu(Fu(x))

)
∇Fu(x) , (15)

PH(x;R,Fu) =
1
|Ω|

(
∂
∂f [pR,Fu(R(x) , f)]f=Fu(x)

pR,Fu(R(x) , Fu(x))

)
∇Fu(x) . (16)

The force vector for MI is derived in [17], and the force vector for NMI follows
a similar derivation.

Once the force vector has been chosen, the evolution equations (4) or (6)
can be approximately solved by introducing a discretization that is backward in
time and centered in space, and then by using Fourier methods [18] to resolve the
linear system that arises at each time step. If (6) is being solved, the displacement
field u can be computed from the velocity field v at each time step by Euler
integration of (8).



4 Nonrigid Registration with Vector-Valued Images

If the images being registered are vector-valued or distribution-valued, the same
nonrigid registration framework can be utilized as long as appropriate similarity
measures and force vectors are defined.

We now denote the reference and floating images as functions mapping Ω ⊆
Rd 7→ RN ; namely, R = (R1, . . . , RN )T and F = (F1, . . . , FN )T. The bold font
indicates a vector quantity, whereas the regular font indicates a scalar quantity.

The variational registration problem (2) can still be used, but with R and F
replaced by R and F, respectively. We must now define similarity measures that
operate on these vector-valued images. One such measure can be envisioned as
the integral of the point-wise sum of squared differences between vector com-
ponents. We call this similarity measure the local SSD (LSSD), and define it
by:

LSSD(R,Fu) :=
∫
Ω

N∑
j=1

(
Rj(x)− Fu

j (x)
)2
dx . (17)

The corresponding force vector is derived in the Appendix and is given by:

fLSSD(x,R,Fu) = 2 [∇Fu(x)] (R(x)− Fu(x)) . (18)

Note that the matrix ∇Fu is the d × N Jacobian matrix of Fu defined com-
ponentwise by [∇Fu(x)]jk = ∂

∂xj
Fu
k (x). The force vector (18) can be inserted

into the evolution equations (4) or (6), and nonrigid regisration can proceed as
described in the previous section.

If our vector-valued images contain vectors of class probabilities at each voxel,
we can make the more restrictive assumption that not only are R and F vector-
valued images, they are distribution-valued; i.e., R,F : Ω ⊆ Rd 7→ PN , where
PN is the open probability simplex defined in [19]:

PN :=

{
p |p = (p1, . . . , pN ) ∈ [0, 1] ∧

N∑
i=1

pi = 1

}
. (19)

Since the images are distribution-valued, other choices for the dissimilarity
measure can be made based on probability metrics or premetrics [20]. In this
article, we choose to design a similarity measure based on the Kullback-Leibler
divergence.

The Kullback-Leibler divergence [21] is a premetric that describes the relative
entropy between two distributions. For each position in the reference and floating
images, it is defined by:

KL(R(x) ,Fu(x)) :=
N∑
j=1

Fu
j (x) log

(
Fu
j (x)
Rj(x)

)
, (20)

An image similarity measure can be constructed by integrating (20) over the
image domain. We call this similarity measure the local KL divergence (LKL),



and define it according to:

LKL(R,Fu) :=
∫
Ω

KL(R(x) ,Fu(x)) dx . (21)

The corresponding force vector is derived in the Appendix and is defined com-
ponentwise by:

[fLKL(x,R,Fu)]j := −
N∑
k=1

[∇Fu(x)]j,k

(
log
(
Fu
k (x)
Rk(x)

)
+ 1
)
. (22)

As with the LSSD similarity measure, the LKL force vector can be inserted
into the evolution equations (4) or (6), and nonrigid registration can proceed as
described in the previous section.

Note that the LSSD and LKL are not the only similarity measures that
can be designed for vector-valued or distribution-valued data. Theoretically, any
distance measure that can be defined in a vector space or over probability dis-
tributions can be developed into a similarity measure for image registration.
This shows a potential advantage over the registration approach of Lorenzen et
al. [11]. Even though our LKL similarity measure is similar to the one used by
Lorenzen, it does not require construction of an atlas; Lorenzen’s atlas construc-
tion step appears to be possible only when KL divergence is used, and it does
not appear to be easily generalizable to other similarity measures.

5 Registration Experiment

To validate the use of distribution-valued images in a practical registration, we
developed an experiment on a dataset of 4 human whole body MR and CT im-
ages, where patients were scanned with their arms above the head for both the
MR and the CT scan. Class probabilities for the classes air, fat, soft tissue and
bone were computed for the MR and the CT image. For the MR images they were
constructed from a normalized product of p (I|C) and p (C|I,X). Here, p (I|C)
was determined by histogram binning the intensities of all voxels that belong to
each of the four classes, where the class assignment was determined by using a
previously obtained segmentation. The quantity p (C|I,X) was determined by
averaging the result of several atlas registrations. For the acquisition of the MR
images we used a protocol that acquires opposed phased and inphase images in
one scan. Resolution was 2.6 × 2.6 × 2.6mm3 and TA = 18s, which allowed for
breath hold acquisition. In the CT images, the intensity alone was informative
enough and no atlas registration was necessary as an additional source of infor-
mation. We assumed that for the CT images, the intensity distribution p(I|C)
could be approximated by a mixture of Gaussians.

We performed nonrigid registration, both with MI and NMI on the original
MR and CT images, and with LSSD and LKL on class probability images. For the
MI and NMI computations, histograms (and joint histograms) were estimated
using 32 (and 32 × 32) bins. Linear (or bilinear) interpolation was used to



accumulate partial weights in neighboring bins. Registration in all cases was
done over three levels in a multiresolution pyramid, with approximately isotropic
sampling at 2.6mm in each dimension at the finest level, and 10.4mm in each
dimension at the coarsest level. We varied the α parameter that trades off the
contribution of the similarity measure and regularizer, and we experimented with
various amounts of smoothing at each resolution level.

In order to assess errors in a physically meaningful sense, we manually placed
approximately 30 landmarks of corresponding points in each MR and CT image
pair, examples of which are shown in Fig. 2. These landmarks were unknown
to the registration algorithms; they were only used retrospectively to compute
target registration error (TRE).

Fig. 2. Manually placed landmarks in CT and MR image.

6 Results

For each similarity measure, we selected the best performing set of values for α
and smoothing amount at each resolution level. The resulting target registration
errors (TRE) are reported for each patient in Table 1. Results indicate that there
is an appreciable improvement in TRE for three out of the four patients when
using the vector-valued similarity measures over the MI/NMI.

To illustrate an example registration, Fig. 3 shows fused images before and
after a nonrigid registration algorithm using LKL was applied to one of the
patient datasets. The left images are slices from an MR dataset that are treated
as the reference image and remain unchanged; the right images are slices from a
CT dataset that is in its original position (upper) and warped aligned position
(lower). In the middle show the fused MR/CT slices, both before (upper) and
after (lower) nonrigid registration.



MI NMI LSSD LKL

Patient 1 Median TRE 17.8 17.6 13.4 13.4
Patient 1 St. Dev. TRE 10.7 10.3 8.0 8.0

Patient 2 Median TRE 13.2 14.4 9.4 8.8
Patient 2 St. Dev. TRE 7.0 6.5 6.0 5.9

Patient 3 Median TRE 16.1 16.9 10.8 10.7
Patient 3 St. Dev. TRE 10.4 9.8 10.6 10.4

Patient 4 Median TRE 13.5 13.9 13.0 13.2
Patient 4 St. Dev. TRE 14.7 14.7 15.3 15.0

Table 1. TRE statistics (in mm) for each patient for each similarity measure.

Fig. 3. Example visualization of nonrigid registration. Left images are identical MR
slices; right images are CT slices before (upper) and after (lower) nonrigid registration.
Middle images are fused versions of the MR/CT slices before (upper) and after (lower)
registration.



7 Conclusion

In this article, we have shown that prior knowledge on class probabilities can be
incorporated into intermodality image registration. Class probability vectors at
each voxel can be constructed from extra information provided by an imaging
device, from pre-segmentations, and/or from probabilistic atlases. Incorporation
of vector-valued or distribution-valued images into registration requires defining
new image similarity measures. In this paper, we presented two such measures,
the local SSD, and the local KL divergence, which do not rely on independence
assumptions or intermediate atlas formation. When tested on the problem of
nonrigid registration of MR and CT full-body images, registration using the
proposed measures outperformed standard MI/NMI-based registration a major-
ity of the time when measured in terms of target registration error on manually
identified fiducial markers.

Appendix

In this appendix, we derive the force vectors for the LSSD and LKL similarity
measures defined in (17) and (21), respectively. We note that for a general simi-
larity measure J (R,Fu), the force vector fJ (x,R,Fu) is related to the Gâteaux
derivative of J in the following way:

dJ (R,Fu; w) =
∫
Ω

〈fJ (x,R,Fu) ,w(x)〉 dx . (23)

To aid in the derivation of the force vectors for the LSSD and LKL similarity
measures, we present and prove the following Lemma.

Lemma 1 If the dissimilarity measure J (R,Fu) can be expressed as a func-
tional of the form:

J (R,Fu) =
∫
Ω

M(R(x) ,Fu(x)) dx , (24)

then the Gâteaux derivative dJ (R,Fu; w) can be expressed as:

dJ (R,Fu; w) =
∫
Ω

〈−∇Fu(x) [∇FuM(R(x) ,Fu(x))] ,w〉 dx . (25)

Proof. By the definition of the Gâteaux derivative, we have:

dJ (R,Fu; w) = lim
h→0

1
h

[∫
Ω

M
(
R(x) ,Fu+hw(x)

)
dx−

∫
Ω

M(R(x) ,Fu(x)) dx
]

= lim
h→0

1
h

∫
Ω

∫ 1

0

d

ds
M
(
R(x) ,Fu+hsw(x)

)
ds dx

= lim
h→0

1
h

∫
Ω

∫ 1

0

〈
d

ds
Fu+hsw(x) ,∇FuM

(
R(x) ,Fu+hsw(x)

)〉
ds dx



= lim
h→0

1
h

∫
Ω

∫ 1

0

〈〈
∇Fu+hsw(x) ,−hw

〉
,∇FuM

(
R(x) ,Fu+hsw(x)

)〉
ds dx

=
∫
Ω

∫ 1

0

〈〈−∇Fu(x) ,w〉 ,∇FuM(R(x) ,Fu(x))〉 ds dx

=
∫
Ω

∫ 1

0

〈−∇Fu(x) [∇FuM(R(x) ,Fu(x))] ,w〉 ds dx

=
∫
Ω

〈−∇Fu(x) [∇FuM(R(x) ,Fu(x))] ,w〉 dx ut

Now, the LSSD similarity measure (17) can be defined in terms of (24) with:

M(R(x) ,Fu(x)) =
N∑
j=1

(
Rj(x)− Fu

j (x)
)2

. (26)

For this case, we have:

∇FuM(R(x) ,Fu(x)) = −2 (R(x)− Fu(x)) , (27)

and (18) is a direct result of Lemma 1 and (23).
The LKL similarity measure (17) can also be defined in terms of (24) with:

M(R(x) ,Fu(x)) = KL(R(x) ,Fu(x)) =
N∑
j=1

Fu
j (x) log

(
Fu
j (x)
Rj(x)

)
. (28)

Now for this case, we have:

∇Fu
k
M(R(x) ,Fu(x)) = log

(
Fu
k (x)
Rk(x)

)
+ 1 , (29)

and (22) is a direct result of Lemma 1 and (23).
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