371 research outputs found
The first Hochschild cohomology group of a schurian cluster-tilted algebra
Given a cluster-tilted algebra B we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. We find several consequences when B is representation-finite, and also in the case where B is cluster-tilted of type Ã.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin
-cluster categories and -replicated algebras
Let A be a hereditary algebra over an algebraically closed field. We prove
that an exact fundamental domain for the m-cluster category of A is the m-left
part of the m-replicated algebra of A. Moreover, we obtain a
one-to-one correspondence between the tilting objects in the m-cluster category
(that is, the m-clusters) and those tilting -modules for which all non
projective-injective direct summands lie in the m-left part of .Comment: 28 pages, 2 figure
Cycle-finite module categories
We describe the structure of module categories of finite dimensional algebras
over an algebraically closed field for which the cycles of nonzero
nonisomorphisms between indecomposable finite dimensional modules are finite
(do not belong to the infinite Jacobson radical of the module category).
Moreover, geometric and homological properties of these module categories are
exhibited
The derived category of surface algebras: the case of the torus with one boundary component
In this paper we refine the main result of a previous paper of the author
with Grimeland on derived invariants of surface algebras. We restrict to the
case where the surface is a torus with one boundary component and give an
easily computable derived invariant for such surface algebras. This result
permits to give answers to open questions on gentle algebras: it provides
examples of gentle algebras with the same AG-invariant (in the sense of
Avella-Alaminos and Geiss) that are not derived equivalent and gives a partial
positive answer to a conjecture due to Bobi\'nski and Malicki on gentle
-cycles algebras.Comment: 22 pages, a mistake concerning the computation of the mapping class
group has been fixed, version 3: 25 pages, to appear in Algebras and
Representation Theor
The Intrinsic Fundamental Group of a Linear Category
We provide an intrinsic definition of the fundamental group of a linear
category over a ring as the automorphism group of the fibre functor on Galois
coverings. If the universal covering exists, we prove that this group is
isomorphic to the Galois group of the universal covering. The grading deduced
from a Galois covering enables us to describe the canonical monomorphism from
its automorphism group to the first Hochschild-Mitchell cohomology vector
space.Comment: Final version, to appear in Algebras and Representation Theor
The solution of the quantum T-system for arbitrary boundary
We solve the quantum version of the -system by use of quantum
networks. The system is interpreted as a particular set of mutations of a
suitable (infinite-rank) quantum cluster algebra, and Laurent positivity
follows from our solution. As an application we re-derive the corresponding
quantum network solution to the quantum -system and generalize it to
the fully non-commutative case. We give the relation between the quantum
-system and the quantum lattice Liouville equation, which is the quantized
-system.Comment: 24 pages, 18 figure
Semi-invariants of symmetric quivers of tame type
A symmetric quiver is a finite quiver without oriented cycles
equipped with a contravariant involution on . The involution allows us to define a nondegenerate bilinear form on
a representation $V$ of $Q$. We shall say that $V$ is orthogonal if is
symmetric and symplectic if is skew-symmetric. Moreover, we define an
action of products of classical groups on the space of orthogonal
representations and on the space of symplectic representations. So we prove
that if is a symmetric quiver of tame type then the rings of
semi-invariants for this action are spanned by the semi-invariants of
determinantal type and, when matrix defining is skew-symmetric, by
the Pfaffians . To prove it, moreover, we describe the symplectic and
orthogonal generic decomposition of a symmetric dimension vector
Tilted algebras and short chains of modules
We provide an affirmative answer for the question raised almost twenty years
ago concerning the characterization of tilted artin algebras by the existence
of a sincere finitely generated module which is not the middle of a short
chain
Rigid and Schurian modules over cluster-tilted algebras of tame type
We give an example of a cluster-tilted algebra Λ with quiver Q, such that the associated cluster algebra A(Q) has a denominator vector which is not the dimension vector of any indecomposable Λ-module. This answers a question posed by T. Nakanishi. The relevant example is a cluster-tilted algebra associated with a tame hereditary algebra. We show that for such a cluster-tilted algebra Λ, we can write any denominator vector as a sum of the dimension vectors of at most three indecomposable rigid Λ-modules. In order to do this it is necessary, and of independent interest, to first classify the indecomposable rigid Λ-modules in this case
On Arnold's 14 `exceptional' N=2 superconformal gauge theories
We study the four-dimensional superconformal N=2 gauge theories engineered by
the Type IIB superstring on Arnold's 14 exceptional unimodal singularities
(a.k.a. Arnold's strange duality list), thus extending the methods of 1006.3435
to singularities which are not the direct sum of minimal ones. In particular,
we compute their BPS spectra in several `strongly coupled' chambers.
From the TBA side, we construct ten new periodic Y-systems, providing
additional evidence for the existence of a periodic Y-system for each isolated
quasi-homogeneous singularity with (more generally, for each N=2
superconformal theory with a finite BPS chamber whose chiral primaries have
dimensions of the form N/l).Comment: 73 pages, 7 figure
- …
