371 research outputs found

    The first Hochschild cohomology group of a schurian cluster-tilted algebra

    Get PDF
    Given a cluster-tilted algebra B we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. We find several consequences when B is representation-finite, and also in the case where B is cluster-tilted of type Ã.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin

    mm-cluster categories and mm-replicated algebras

    Full text link
    Let A be a hereditary algebra over an algebraically closed field. We prove that an exact fundamental domain for the m-cluster category of A is the m-left part of the m-replicated algebra A(m)A^{(m)} of A. Moreover, we obtain a one-to-one correspondence between the tilting objects in the m-cluster category (that is, the m-clusters) and those tilting A(m)A^{(m)}-modules for which all non projective-injective direct summands lie in the m-left part of A(m)A^{(m)}.Comment: 28 pages, 2 figure

    Cycle-finite module categories

    Get PDF
    We describe the structure of module categories of finite dimensional algebras over an algebraically closed field for which the cycles of nonzero nonisomorphisms between indecomposable finite dimensional modules are finite (do not belong to the infinite Jacobson radical of the module category). Moreover, geometric and homological properties of these module categories are exhibited

    The derived category of surface algebras: the case of the torus with one boundary component

    Full text link
    In this paper we refine the main result of a previous paper of the author with Grimeland on derived invariants of surface algebras. We restrict to the case where the surface is a torus with one boundary component and give an easily computable derived invariant for such surface algebras. This result permits to give answers to open questions on gentle algebras: it provides examples of gentle algebras with the same AG-invariant (in the sense of Avella-Alaminos and Geiss) that are not derived equivalent and gives a partial positive answer to a conjecture due to Bobi\'nski and Malicki on gentle 22-cycles algebras.Comment: 22 pages, a mistake concerning the computation of the mapping class group has been fixed, version 3: 25 pages, to appear in Algebras and Representation Theor

    The Intrinsic Fundamental Group of a Linear Category

    Get PDF
    We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space.Comment: Final version, to appear in Algebras and Representation Theor

    The solution of the quantum A1A_1 T-system for arbitrary boundary

    Full text link
    We solve the quantum version of the A1A_1 TT-system by use of quantum networks. The system is interpreted as a particular set of mutations of a suitable (infinite-rank) quantum cluster algebra, and Laurent positivity follows from our solution. As an application we re-derive the corresponding quantum network solution to the quantum A1A_1 QQ-system and generalize it to the fully non-commutative case. We give the relation between the quantum TT-system and the quantum lattice Liouville equation, which is the quantized YY-system.Comment: 24 pages, 18 figure

    Semi-invariants of symmetric quivers of tame type

    Full text link
    A symmetric quiver (Q,σ)(Q,\sigma) is a finite quiver without oriented cycles Q=(Q0,Q1)Q=(Q_0,Q_1) equipped with a contravariant involution σ\sigma on Q0Q1Q_0\sqcup Q_1. The involution allows us to define a nondegenerate bilinear form on a representation $V$ of $Q$. We shall say that $V$ is orthogonal if is symmetric and symplectic if is skew-symmetric. Moreover, we define an action of products of classical groups on the space of orthogonal representations and on the space of symplectic representations. So we prove that if (Q,σ)(Q,\sigma) is a symmetric quiver of tame type then the rings of semi-invariants for this action are spanned by the semi-invariants of determinantal type cVc^V and, when matrix defining cVc^V is skew-symmetric, by the Pfaffians pfVpf^V. To prove it, moreover, we describe the symplectic and orthogonal generic decomposition of a symmetric dimension vector

    Tilted algebras and short chains of modules

    Get PDF
    We provide an affirmative answer for the question raised almost twenty years ago concerning the characterization of tilted artin algebras by the existence of a sincere finitely generated module which is not the middle of a short chain

    Rigid and Schurian modules over cluster-tilted algebras of tame type

    Get PDF
    We give an example of a cluster-tilted algebra Λ with quiver Q, such that the associated cluster algebra A(Q) has a denominator vector which is not the dimension vector of any indecomposable Λ-module. This answers a question posed by T. Nakanishi. The relevant example is a cluster-tilted algebra associated with a tame hereditary algebra. We show that for such a cluster-tilted algebra Λ, we can write any denominator vector as a sum of the dimension vectors of at most three indecomposable rigid Λ-modules. In order to do this it is necessary, and of independent interest, to first classify the indecomposable rigid Λ-modules in this case

    On Arnold's 14 `exceptional' N=2 superconformal gauge theories

    Get PDF
    We study the four-dimensional superconformal N=2 gauge theories engineered by the Type IIB superstring on Arnold's 14 exceptional unimodal singularities (a.k.a. Arnold's strange duality list), thus extending the methods of 1006.3435 to singularities which are not the direct sum of minimal ones. In particular, we compute their BPS spectra in several `strongly coupled' chambers. From the TBA side, we construct ten new periodic Y-systems, providing additional evidence for the existence of a periodic Y-system for each isolated quasi-homogeneous singularity with c^<2\hat c<2 (more generally, for each N=2 superconformal theory with a finite BPS chamber whose chiral primaries have dimensions of the form N/l).Comment: 73 pages, 7 figure
    corecore