6,275 research outputs found

    Modeling and analysis of slow CW decrease IEEE 802.11 WLAN

    Get PDF
    The IEEE 802.11 medium access control (MAC) protocol provides a contention-based distributed channel access mechanism for mobile stations to share the wireless medium, which may introduce a lot of collisions in case of overloaded active stations. Slow contention window (CW) decrease scheme is a simple and efficient solution for this problem. In this paper, we use an analytical model to compare the slow CW decrease scheme to the IEEE 802.11 MAC protocol. Several parameters are investigated such as the number of stations, the initial CW size, the decrease factor value, the maximum backoff stage and the coexistence with the RequestToSend and ClearToSend (RTS/CTS) mechanism. The results show that the slow CW decrease scheme can efficiently improve the throughput of IEEE 802.11, and that the throughput gain is higher when the decrease factor is larger. Moreover, the initial CW size and maximum backoff stage also affect the performance of slow CW decrease scheme

    Anomalously interacting new extra vector bosons and their first LHC constraints

    Full text link
    In this review phenomenological consequences of the Standard Model extension by means of new spin-1 chiral fields with the internal quantum numbers of the electroweak Higgs doublets are summarized. The prospects for resonance production and detection of the chiral vector Z∗Z^* and W∗±W^{*\pm} bosons at the LHC energies are considered. The Z∗Z^* boson can be observed as a Breit-Wigner resonance peak in the invariant dilepton mass distributions in the same way as the well-known extra gauge Zâ€ČZ' bosons. However, the Z∗Z^* bosons have unique signatures in transverse momentum, angular and pseudorapidity distributions of the final leptons, which allow one to distinguish them from other heavy neutral resonances. In 2010, with 40 pb−1^{-1} of the LHC proton-proton data at the energy 7 TeV, the ATLAS detector was used to search for narrow resonances in the invariant mass spectrum of e+e−e^+e^- and ÎŒ+Ό−\mu^+\mu^- final states and high-mass charged states decaying to a charged lepton and a neutrino. No statistically significant excess above the Standard Model expectation was observed. The exclusion mass limits of 1.15 TeV/c2/c^2 and 1.35 TeV/c2/c^2 were obtained for the chiral neutral Z∗Z^* and charged W∗W^* bosons, respectively. These are the first direct limits on the W∗W^* and Z∗Z^* boson production. For almost all currently considered exotic models the relevant signal is expected in the central dijet rapidity region. On the contrary, the chiral bosons do not contribute to this region but produce an excess of dijet events far away from it. For these bosons the appropriate kinematic restrictions lead to a dip in the centrality ratio distribution over the dijet invariant mass instead of a bump expected in the most exotic models.Comment: 24 pages, 34 figure, based on talk given by V.A.Bednyakov at 15th Lomonosov conference, 22.08.201

    Brane world models need low string scale

    Get PDF
    Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale

    Singular ways to search for the Higgs boson

    Get PDF
    The discovery or exclusion of the fundamental standard scalar is a hot topic, given the data of LEP, the Tevatron and the LHC, as well as the advanced status of the pertinent theoretical calculations. With the current statistics at the hadron colliders, the workhorse decay channel, at all relevant H masses, is H to WW, followed by W to light leptons. Using phase-space singularity techniques, we construct and study a plethora of "singularity variables" meant to facilitate the difficult tasks of separating signal and backgrounds and of measuring the mass of a putative signal. The simplest singularity variables are not invariant under boosts along the collider's axes and the simulation of their distributions requires a good understanding of parton distribution functions, perhaps not a serious shortcoming during the boson hunting season. The derivation of longitudinally boost-invariant variables, which are functions of the four charged-lepton observables that share this invariance, is quite elaborate. But their use is simple and they are, in a kinematical sense, optimal.Comment: 19 pages, including 21 figure

    Higgs After the Discovery: A Status Report

    Full text link
    Recently, the ATLAS and CMS collaborations have announced the discovery of a 125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and 2012 LHC and Tevatron Higgs data in the context of simplified new physics models, paying close attention to models which can enhance the diphoton rate and allow for a natural weak-scale theory. Combining the available LHC and Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels, we derive constraints on the effective low-energy theory of the Higgs boson. We map several simplified scenarios to the effective theory, capturing numerous new physics models such as supersymmetry, composite Higgs, dilaton. We further study models with extended Higgs sectors which can naturally enhance the diphoton rate. We find that the current Higgs data are consistent with the Standard Model Higgs boson and, consequently, the parameter space in all models which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and doublet-singlet bugs corrected, references added; v3: ATLAS WW channel included, comments and references adde

    Parton distributions with LHC data

    Get PDF
    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z lepton rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, Tevatron and LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.Comment: 56 pages, 30 figures. LHCb dataset updated, all tables and plots recomputed accordingly (results essentially unchanged). Several typos corrected, several small textual improvements and clarification

    Constraints on supersymmetry with light third family from LHC data

    Full text link
    We present a re-interpretation of the recent ATLAS limits on supersymmetry in channels with jets (with and without b-tags) and missing energy, in the context of light third family squarks, while the first two squark families are inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast to interpretations in terms of the high-scale based constrained minimal supersymmetric standard model (CMSSM), we primarily use the low-scale parametrisation of the phenomenological MSSM (pMSSM), and translate the limits in terms of physical masses of the third family squarks. Side by side, we also investigate the limits in terms of high-scale scalar non-universality, both with and without low-mass sleptons. Our conclusion is that the limits based on 0-lepton channels are not altered by the mass-scale of sleptons, and can be considered more or less model-independent.Comment: 20 pages, 8 figures, 2 tables. Version published in JHE

    Where is SUSY?

    Full text link
    The direct searches for Superymmetry at colliders can be complemented by direct searches for dark matter (DM) in underground experiments, if one assumes the Lightest Supersymmetric Particle (LSP) provides the dark matter of the universe. It will be shown that within the Constrained minimal Supersymmetric Model (CMSSM) the direct searches for DM are complementary to direct LHC searches for SUSY and Higgs particles using analytical formulae. A combined excluded region from LHC, WMAP and XENON100 will be provided, showing that within the CMSSM gluinos below 1 TeV and LSP masses below 160 GeV are excluded (m_{1/2} > 400 GeV) independent of the squark masses.Comment: 16 pages, 10 figure

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    The Universal Real Projective Plane: LHC phenomenology at one Loop

    Full text link
    The Real Projective Plane is the lowest dimensional orbifold which, when combined with the usual Minkowski space-time, gives rise to a unique model in six flat dimensions possessing an exact Kaluza Klein (KK) parity as a relic symmetry of the broken six dimensional Lorentz group. As a consequence of this property, any model formulated on this background will include a stable Dark Matter candidate. Loop corrections play a crucial role because they remove mass degeneracy in the tiers of KK modes and induce new couplings which mediate decays. We study the full one loop structure of the corrections by means of counter-terms localised on the two singular points. As an application, the phenomenology of the (2,0) and (0,2) tiers is discussed at the LHC. We identify promising signatures with single and di-lepton, top antitop and 4 tops: in the dilepton channel, present data from CMS and ATLAS may already exclude KK masses up to 250 GeV, while by next year they may cover the whole mass range preferred by WMAP data.Comment: 45 pages, 3 figure
    • 

    corecore