185 research outputs found
The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance
Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin’s role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches
Hijacking of transcriptional condensates by endogenous retroviruses
Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate ‘hijacking’ of transcriptional condensates in various developmental and disease contexts
Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum
Background
Sorghum (Sorghum bicolor L. Moench) productivity is severely impeded by low phosphorus (P) and aluminum (Al) toxic soils in sub-Saharan Africa and especially West Africa (WA). Improving productivity of this staple crop under these harsh conditions is crucial to improve food security and farmer’s incomes in WA.
Results
This is the first study to examine the genetics underlying sorghum adaptation to phosphorus limitation in a wide range of WA growing conditions. A set of 187 diverse sorghum genotypes were grown in 29 –P and + P field experiments from 2006-2012 in three WA countries. Sorghum grain yield performance under –P and + P conditions was highly correlated (r = 0.85***). Significant genotype-by-phosphorus interaction was detected but with small magnitude compared to the genotype variance component. We observed high genetic diversity within our panel, with rapid linkage disequilibrium decay, confirming recent sequence based studies in sorghum. Using genome wide association mapping based on 220 934 SNPs we identified one genomic region on chromosome 3 that was highly associated to grain yield production. A major Al-tolerance gene in sorghum, SbMATE, was collocated in this region and SbMATE specific SNPs showed very high associations to grain yield production, especially under –P conditions, explaining up to 16% of the genotypic variance.
Conclusion
The results suggest that SbMATE has a possible pleiotropic role in providing tolerance to two of the most serious abiotic stresses for sorghum in WA, Al toxicity and P deficiency. The identified SNPs can help accelerate breeding for increased sorghum productivity under unfavorable soil conditions and contribute to assuring food security in WA
Coactivator condensation at super-enhancers links phase separation and gene control
Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes
Dendritic Cell Subtypes from Lymph Nodes and Blood Show Contrasted Gene Expression Programs upon Bluetongue Virus Infection
Chantier qualité GAHuman and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases
Modelling the Protective Efficacy of Alternative Delivery Schedules for Intermittent Preventive Treatment of Malaria in Infants and Children
BACKGROUND: Intermittent preventive treatment in infants (IPTi) with sulfadoxine-pyrimethamine (SP) is recommended by WHO where malaria incidence in infancy is high and SP resistance is low. The current delivery strategy is via routine Expanded Program on Immunisation contacts during infancy (EPI-IPTi). However, improvements to this approach may be possible where malaria transmission is seasonal, or where the malaria burden lies mainly outside infancy. METHODS AND FINDINGS: A mathematical model was developed to estimate the protective efficacy (PE) of IPT against clinical malaria in children aged 2-24 months, using entomological and epidemiological data from an EPI-IPTi trial in Navrongo, Ghana to parameterise the model. The protection achieved by seasonally-targeted IPT in infants (sIPTi), seasonal IPT in children (sIPTc), and by case-management with long-acting artemisinin combination therapies (LA-ACTs) was predicted for Navrongo and for sites with different transmission intensity and seasonality. In Navrongo, the predicted PE of sIPTi was 26% by 24 months of age, compared to 16% with EPI-IPTi. sIPTc given to all children under 2 years would provide PE of 52% by 24 months of age. Seasonally-targeted IPT retained its advantages in a range of transmission patterns. Under certain circumstances, LA-ACTs for case-management may provide similar protection to EPI-IPTi. However, EPI-IPTi or sIPT combined with LA-ACTs would be substantially more protective than either strategy used alone. CONCLUSION: Delivery of IPT to infants via the EPI is sub-optimal because individuals are not protected by IPT at the time of highest malaria risk, and because older children are not protected. Alternative delivery strategies to the EPI are needed where transmission varies seasonally or the malaria burden extends beyond infancy. Long-acting ACTs may also make important reductions in malaria incidence. However, delivery systems must be developed to ensure that both forms of chemoprevention reach the individuals who are most exposed to malaria
Determinants of the Cost-Effectiveness of Intermittent Preventive Treatment for Malaria in Infants and Children
BACKGROUND: Trials of intermittent preventive treatment in infants (IPTi) and children (IPTc) have shown promising results in reducing malaria episodes but with varying efficacy and cost-effectiveness. The effects of different intervention and setting characteristics are not well known. We simulate the effects of the different target age groups and delivery channels, seasonal or year-round delivery, transmission intensity, seasonality, proportions of malaria fevers treated and drug characteristics. METHODS: We use a dynamic, individual-based simulation model of Plasmodium falciparum malaria epidemiology, antimalarial drug action and case management to simulate DALYs averted and the cost per DALY averted by IPTi and IPTc. IPT cost components were estimated from economic studies alongside trials. RESULTS: IPTi and IPTc were predicted to be cost-effective in most of the scenarios modelled. The cost-effectiveness is driven by the impact on DALYs, particularly for IPTc, and the low costs, particularly for IPTi which uses the existing delivery strategy, EPI. Cost-effectiveness was predicted to decrease with low transmission, badly timed seasonal delivery in a seasonal setting, short-acting and more expensive drugs, high frequencies of drug resistance and high levels of treatment of malaria fevers. Seasonal delivery was more cost-effective in seasonal settings, and year-round in constant transmission settings. The difference was more pronounced for IPTc than IPTi due to the different proportions of fixed costs and also different assumed drug spacing during the transmission season. The number of DALYs averted was predicted to decrease as a target five-year age-band for IPTc was shifted from children under 5 years into older ages, except at low transmission intensities. CONCLUSIONS: Modelling can extend the information available by predicting impact and cost-effectiveness for scenarios, for outcomes and for multiple strategies where, for practical reasons, trials cann be carried out. Both IPTi and IPTc are generally cost-effective but could be rendered cost-ineffective by characteristics of the setting, drug or implementatio
- …