25 research outputs found

    Moessbauer Mineralogy of Rock, Soil, and Dust at Gusev Crater, Mars: Spirit's Journey through Weakly Altered Olivine Basalt on the Plains and Pervasively Altered Basalt in the Columbia Hills

    Get PDF
    The Moessbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe(3+)-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe(3+)/Fe(sub T)Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe(3+)/Fe(sub T) approx.0.6-0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe(2+) from Ol+Px is 40-49% and 9-24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm approx.3-6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt approx. 10-15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt=40%). Goethite (alpha-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe(3+)/Fe(sub T) approx. 0.3) occur throughout Gusev crater (approx. 60-80% Fe from Ol+Px, approx. 10-30% from npOx, and approx. 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe(3+)-sulfate (approx. 65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust

    Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills

    Get PDF
    The Mössbauer spectrometer on Spirit measured the oxidation state of Fe, identified Fe-bearing phases, and measured relative abundances of Fe among those phases for surface materials on the plains and in the Columbia Hills of Gusev crater. Eight Fe-bearing phases were identified: olivine, pyroxene, ilmenite, magnetite, nanophase ferric oxide (npOx), hematite, goethite, and a Fe3+-sulfate. Adirondack basaltic rocks on the plains are nearly unaltered (Fe3+/FeT < 0.2) with Fe from olivine, pyroxene (Ol > Px), and minor npOx and magnetite. Columbia Hills basaltic rocks are nearly unaltered (Peace and Backstay), moderately altered (WoolyPatch, Wishstone, and Keystone), and pervasively altered (e.g., Clovis, Uchben, Watchtower, Keel, and Paros with Fe3+/FeT ~ 0.6–0.9). Fe from pyroxene is greater than Fe from olivine (Ol sometimes absent), and Fe2+ from Ol + Px is 40–49% and 9–24% for moderately and pervasively altered materials, respectively. Ilmenite (Fe from Ilm 3–6%) is present in Backstay, Wishstone, Keystone, and related rocks along with magnetite (Fe from Mt 10–15%). Remaining Fe is present as npOx, hematite, and goethite in variable proportions. Clovis has the highest goethite content (Fe from Gt = 40%). Goethite (α-FeOOH) is mineralogical evidence for aqueous processes because it has structural hydroxide and is formed under aqueous conditions. Relatively unaltered basaltic soils (Fe3+/FeT ~ 0.3) occur throughout Gusev crater (60–80% Fe from Ol + Px, 10–30% from npOx, and 10% from Mt). PasoRobles soil in the Columbia Hills has a unique occurrence of high concentrations of Fe3+-sulfate (65% of Fe). Magnetite is identified as a strongly magnetic phase in Martian soil and dust.Additional co-authors: E Kankeleit, P Gütlich, F Renz, SW Squyres, RE Arvidso

    Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits

    Get PDF
    The Mössbauer (MB) spectrometer on Opportunity measured the Fe oxidation state, identified Fe-bearing phases, and measured relative abundances of Fe among those phases at Meridiani Planum, Mars. Eight Fe-bearing phases were identified: jarosite (K,Na,H3O)(Fe,Al)(OH)6(SO4)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and metallic Fe (kamacite). Burns Formation outcrop rocks consist of hematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (29%, 36%, and 20% of total Fe). The high oxidation state of the S-rich rock (Fe3+/FeT ~ 0.9) implies that S is present as the sulfate anion. Jarosite is mineralogical evidence for aqueous processes under acid-sulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/FeT ~ 0.2–0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Average proportions of total Fe from olivine, pyroxene, npOx, magnetite, and hematite are 33%, 38%, 18%, 6%, and 4%, respectively. TheMB parameters of outcrop npOx and basaltic-soil npOx are different, but it is not possible to infer mineralogical information beyond octahedrally coordinated Fe3+. Basaltic soils at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions.Additonal co-authors: P Gütlich, E Kankeleit, T McCoy, DW Mittlefehldt, F Renz, ME Schmidt, B Zubkov, SW Squyres, RE Arvidso
    corecore