167 research outputs found

    Entanglement and criticality in translational invariant harmonic lattice systems with finite-range interactions

    Full text link
    We discuss the relation between entanglement and criticality in translationally invariant harmonic lattice systems with non-randon, finite-range interactions. We show that the criticality of the system as well as validity or break-down of the entanglement area law are solely determined by the analytic properties of the spectral function of the oscillator system, which can easily be computed. In particular for finite-range couplings we find a one-to-one correspondence between an area-law scaling of the bi-partite entanglement and a finite correlation length. This relation is strict in the one-dimensional case and there is strog evidence for the multi-dimensional case. We also discuss generalizations to couplings with infinite range. Finally, to illustrate our results, a specific 1D example with nearest and next-nearest neighbor coupling is analyzed.Comment: 4 pages, one figure, revised versio

    Electron-phonon interaction via Pekar mechanism in nanostructures

    Full text link
    We consider an electron-acoustic phonon coupling mechanism associated with the dependence of crystal dielectric permittivity on the strain (the so-called Pekar mechanism) in nanostructures characterized by strong confining electric fields. The efficiency of Pekar coupling is a function of both the absolute value and the spatial distribution of the electric field. It is demonstrated that this mechanism exhibits a phonon wavevector dependence similar to that of piezoelectricity and must be taken into account for electron transport calculations in an extended field distribution. In particular, we analyze the role of Pekar coupling in energy relaxation in silicon inversion layers. Comparison with the recent experimental results is provided to illustrate its potential significance

    The peculiarities of cross-correlation between two secondary precursors - radon and magnetic field variations, induced by stress transfer changes

    Full text link
    A model of precursor manifestation mechanisms, stimulated by tectonic activity and some peculiarities of observer strategy, whose main task is the effective measurement of precursors in the spatial area of their occurrence on the Earth's daylight, are considered. In particular, the applicability of Dobrovolsky's approximation is analyzed, when an unperturbed medium (characterized by the simple shear state) and the area of tectonic activity (local inhomogeneity caused by the change only of shear modulus) are linearly elastic, and perturbation, in particular, surface displacement is calculated as a difference of the solutions of two independent static problems of the theory of elasticity with the same boundary condition on the surface. Within the framework of this approximation a formula for the spatial distribution (of first component) of magnetic field variations caused by piezomagnetic effect in the case of perturbed regular medium, which is in simple shear state is derived. Cogent arguments in favor of linear dependence between the radon spatial distribution and conditional deformation are obtained. Changes in magnetic field strength and radon concentrations were measured along a tectonomagnetic profile of the total length of 11 km in the surroundings of the "Academician Vernadsky" Station on the Antarctic Peninsula (W 64{\deg}16', S 65{\deg}15'). Results showed a positive correlation between the annual surface radon concentration and annual changes of magnetic field relative to a base point, and also the good coincidence with theoretical calculation.Comment: 27 pages, 11 figures, 3 tables (a substantially revised and extended edition; v3 -- some analysis of recent publications added

    Zeroes of Gaussian Analytic Functions with Translation-Invariant Distribution

    Full text link
    We study zeroes of Gaussian analytic functions in a strip in the complex plane, with translation-invariant distribution. We prove that the a limiting horizontal mean counting-measure of the zeroes exists almost surely, and that it is non-random if and only if the spectral measure is continuous (or degenerate). In this case, the mean zero-counting measure is computed in terms of the spectral measure. We compare the behavior with Gaussian analytic function with symmetry around the real axis. These results extend a work by Norbert Wiener.Comment: 24 pages, 1 figure. Some corrections were made and presentation was improve

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT(4 )agonist – tegaserod

    Get PDF
    BACKGROUND: Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT(4 )receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. METHODS: The effects of a high cholesterol (1%) diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX). Two groups of animals, fed either low (0.03%) or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. RESULTS: The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod-treatment removed the effects of a high cholesterol diet on neuronal muscarinic receptors, as the potentiating effect of TTX on carbachol-elicited contractions was maintained in these animals. CONCLUSION: A high cholesterol diet causes significant changes to cholinergic neurotransmission in the enteric nerves of the jejunum. The mechanisms by which these effects of cholesterol are reversed by tegaserod are unknown, but relate to removal of an inhibitory effect of cholesterol on enteric nerves

    Condensation transition in joint large deviations of linear statistics

    Get PDF
    Real space condensation is known to occur in stochastic models of mass transport in the regime in which the globally conserved mass density is greater than a critical value. It has been shown within models with factorised stationary states that the condensation can be understood in terms of sums of independent and identically distributed random variables: these exhibit condensation when they are conditioned to a large deviation of their sum. It is well understood that the condensation, whereby one of the random variables contributes a finite fraction to the sum, occurs only if the underlying probability distribution (modulo exponential) is heavy-tailed, i.e. decaying slower than exponential. Here we study a similar phenomenon in which condensation is exhibited for non-heavy-tailed distributions, provided random variables are additionally conditioned on a large deviation of certain linear statistics. We provide a detailed theoretical analysis explaining the phenomenon, which is supported by Monte Carlo simulations (for the case where the additional constraint is the sample variance) and demonstrated in several physical systems. Our results suggest that the condensation is a generic phenomenon that pertains to both typical and rare events.Comment: 30 pages, 4 figures (minor revision

    Parameter induction in continuous univariate distributions: Well-established G families

    Full text link

    Solving the problem of anomalous J/ ψ\psi suppression by the MPD experiment on the NICA collider

    Get PDF
    The meassurements of charmonium states production via their decay on lepton pairs by the MPD experiment on the NICA collider at the energies sNN \sqrt{s_{NN}} = 4-11 GeV per nucleon could provide important data for solving the problem of anomalous J/ψ \psi suppression first observed in central Pb-Pb collisions by the NA50 Collaboration at 158 GeV/nucleon. The anomalous J/ψ \psi suppression could be due to the formation of the QGP in the central heavy-ion collisions. However, this effect could be also interpreted as the result of the comover interactions in nuclear matter. The recent experiments at the SPS, at the RHIC, and the LHC reviewed in this article indicate a more complicated picture of the J/ψ \psi production including the recombination, medium effects, parton shadowing, and the coherent energy loss mechanism. A more simple production mechanism could be expected at low colliding energies. However, no data were obtained at energies below sNN=17 \sqrt{s_{NN}}=17 GeV for heavy-ion collisions. After the short review of the whole set of the data of charmonium states observation the estimation of the production rate for the MPD/NICA is made
    corecore