We consider an electron-acoustic phonon coupling mechanism associated with
the dependence of crystal dielectric permittivity on the strain (the so-called
Pekar mechanism) in nanostructures characterized by strong confining electric
fields. The efficiency of Pekar coupling is a function of both the absolute
value and the spatial distribution of the electric field. It is demonstrated
that this mechanism exhibits a phonon wavevector dependence similar to that of
piezoelectricity and must be taken into account for electron transport
calculations in an extended field distribution. In particular, we analyze the
role of Pekar coupling in energy relaxation in silicon inversion layers.
Comparison with the recent experimental results is provided to illustrate its
potential significance