7,713 research outputs found

    The quantum dynamic capacity formula of a quantum channel

    Get PDF
    The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an "ab initio" approach, using only the most basic tools in the quantum information theorist's toolkit: the Alicki-Fannes' inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the "quantum dynamic capacity formula" characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections; v3 has correction regarding the optimizatio

    Involving users in OPAC interface design: Perspective from a UK study

    Get PDF
    This is the post-print versoin of the Article. The official published version can be accessed from the link below - Copyright @ 2007 SpringerThe purpose of this study was to determine user suggestions for a typical OPAC (Online Public Library Catalogue) application’s functionality and features. An experiment was undertaken to find out the type of interactions features that users prefer to have in an OPAC. The study revealed that regardless of users’ Information Technology (IT) backgrounds, their functionality expectations of OPACs are the same. However, based on users’ previous experiences with OPACs, their requirements with respect to specific features may change. Users should be involved early in the OPAC development cycle process in order to ensure usable and functional interface

    Controlling orbital moment and spin orientation in CoO layers by strain

    Get PDF
    We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L2,3_{2,3} edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the strain in the films induced by the substrate. We presented a quantitative model to explain how strain together with the spin-orbit interaction determine the 3d orbital occupation, the magnetic anisotropy, as well as the spin and orbital contributions to the magnetic moments. Control over the sign and direction of the strain may therefore open new opportunities for applications in the field of exchange bias in multilayered magnetic films

    Using Vesicular Dispersion for Stabilizing Suspensions of Dense Colloidal Particles against Sedimentation

    Get PDF
    Colloidal dispersions, like inks and paints, are often required to remain stable for long times, i.e., the dispersed colloidal particles should remain suspended. In most cases, a stable dispersion requires preventing the agglomeration of the suspended colloidal particles. If the particles agglomerate, their sizes will increase and rapid sedimentation will occur. Nevertheless, many colloidal particles of commercial interest have high densities. Thus, they quickly settle even without agglomeration. One novel approach to preventing the settling of high density particles is the use of close-packed vesicular dispersions (CPVDs) made of the surfactant DDAB (didodecyldimethylamine bromide). Previous work demonstrated the ability of these CPVDs to prohibit the settling of high density titania particles. However, only a limited range of particle sizes that were found to remain stable with CPVDs were investigated. Also, the effects of the method of preparation of the CPVDs was not fully explored, as an effecitve CPVD should be generated from the smallest possible amount of added DDAB. Thus, the impact of various preparation methods on the resulting properties of the DDAB vesicular dispersions are examined. DDAB vesicular dispersions are generated via stirring only to form primarily liposomes, sonication to break down large multi-layer vesicles, and extrusion through membranes to obtain specifically sized vesicles. Various light scattering and absorbance techniques are also used to probe the structure of the vesicular dispersions, important information needed for improving the ability of CPVDs to stabilize against sedimentation a broader range of colloidal particle sizes

    Orbital-assisted metal-insulator transition in VO2_{2}

    Get PDF
    We found direct experimental evidence for an orbital switching in the V 3d states across the metal-insulator transition in VO2_{2}. We have used soft-x-ray absorption spectroscopy at the V L2,3L_{2,3} edges as a sensitive local probe, and have determined quantitatively the orbital polarizations. These results strongly suggest that, in going from the metallic to the insulating state, the orbital occupation changes in a manner that charge fluctuations and effective band widths are reduced, that the system becomes more 1-dimensional and more susceptible to a Peierls-like transition, and that the required massive orbital switching can only be made if the system is close to a Mott insulating regime

    Laboratory studies on the irradiation of solid ethane analog ices and implications to Titan's chemistry

    Get PDF
    Pure ethane ices (C2H6) were irradiated at 10, 30, and 50 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray (GCR) particles to simulate the interaction of GCRs with ethane ices in the outer solar system. The chemical processing of the samples was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (products) and quantitative (rate constants and yields) information on the newly synthesized molecules. Six hydrocarbons, methane (CH4), acetylene (C2H2), ethylene (C2H4), and the ethyl radical (C2H5), together with n-butane (C4H10) and butene (C4H8), were found to form at the radiation dose reaching 1.4 eV per molecule. The column densities of these species were quantified in the irradiated ices at each temperature, permitting us to elucidate the temperature and phase-dependent production rates of individual molecules. A kinetic reaction scheme was developed to fit column densities of those species produced during irradiation of amorphous/crystalline ethane held at 10, 30, or 50 K. In general, the yield of the newly formed molecules dropped consistently for all species as the temperature was raised from 10 K to 50 K. Second, the yield in the amorphous samples was found to be systematically higher than in the crystalline samples at constant temperature. A closer look at the branching ratios indicates that ethane decomposes predominantly to ethylene and molecular hydrogen, which may compete with the formation of n-butane inside the ethane matrix. Among the higher molecular products, n-butane dominates. Of particular relevance to the atmosphere of Saturn’s moon Titan is the radiation-induced methane production from ethane—an alternative source of replenishing methane into the atmosphere. Finally, we discuss to what extent the n-butane could be the source of “higher organics” on Titan’s surface thus resembling a crucial sink of condensed ethane molecules

    Don't bleach chaotic data

    Full text link
    A common first step in time series signal analysis involves digitally filtering the data to remove linear correlations. The residual data is spectrally white (it is ``bleached''), but in principle retains the nonlinear structure of the original time series. It is well known that simple linear autocorrelation can give rise to spurious results in algorithms for estimating nonlinear invariants, such as fractal dimension and Lyapunov exponents. In theory, bleached data avoids these pitfalls. But in practice, bleaching obscures the underlying deterministic structure of a low-dimensional chaotic process. This appears to be a property of the chaos itself, since nonchaotic data are not similarly affected. The adverse effects of bleaching are demonstrated in a series of numerical experiments on known chaotic data. Some theoretical aspects are also discussed.Comment: 12 dense pages (82K) of ordinary LaTeX; uses macro psfig.tex for inclusion of figures in text; figures are uufile'd into a single file of size 306K; the final dvips'd postscript file is about 1.3mb Replaced 9/30/93 to incorporate final changes in the proofs and to make the LaTeX more portable; the paper will appear in CHAOS 4 (Dec, 1993

    Two-loop RGEs with Dirac gaugino masses

    Get PDF
    The set of renormalisation group equations to two loop order for general supersymmetric theories broken by soft and supersoft operators is completed. As an example, the explicit expressions for the RGEs in a Dirac gaugino extension of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure
    • 

    corecore