39 research outputs found

    Resource allocation of in vitro fertilization: a nationwide register-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infertility is common and in vitro fertilization (IVF) is a widely used treatment. In IVF the need increases and the effectiveness and appropriateness decrease by age. The purpose of this study was to describe allocation of resources for IVF by women's age, socioeconomic position, area of residence and treatment sector (public vs. private) and to discuss how fairly the IVF resources are allocated in Finland.</p> <p>Methods</p> <p>Women who received IVF between 1996 and 1998 (N = 9175) were identified from the reimbursement records of the Social Insurance Institution (SII). Information on IVF women's background characteristics came from the Central Population Register and the SII, on treatment costs from IVF clinics and the SII, and on births from the Medical Birth Register. The main outcome measures were success of IVF by number of cycles and treated women, expenditures per IVF cycles, per women, per live-birth, and per treatment sector, and private and public expenditures. Expenditures were estimated from health care visits and costs.</p> <p>Results</p> <p>During a mean period of 1.5 years, older women (women aged 40 or older) received 1.4 times more IVF treatment cycles than younger women (women aged below 30). The success rate decreased by age: from 22 live births per 100 cycles among younger women to 6 per 100 among older women. The mean cost of a live birth increased by age: compared to younger women, costs per born live birth of older women were 3-fold. Calculated by population, public expenditure was allocated most to young women and women from the highest socioeconomic position. Regional differences were not remarkable.</p> <p>Conclusion</p> <p>Children of older infertile women involve more expense due to the lower success rates of IVF. Socioeconomic differences suggest unfair resource allocation in Finland.</p

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Neurovascular dysfunction in vascular dementia, Alzheimer’s and atherosclerosis

    Get PDF
    Efficient blood supply to the brain is of paramount importance to its normal functioning and improper blood flow can result in potentially devastating neurological consequences. Cerebral blood flow in response to neural activity is intrinsically regulated by a complex interplay between various cell types within the brain in a relationship termed neurovascular coupling. The breakdown of neurovascular coupling is evident across a wide variety of both neurological and psychiatric disorders including Alzheimer’s disease. Atherosclerosis is a chronic syndrome affecting the integrity and function of major blood vessels including those that supply the brain, and it is therefore hypothesised that atherosclerosis impairs cerebral blood flow and neurovascular coupling leading to cerebrovascular dysfunction. This review will discuss the mechanisms of neurovascular coupling in health and disease and how atherosclerosis can potentially cause cerebrovascular dysfunction that may lead to cognitive decline as well as stroke. Understanding the mechanisms of neurovascular coupling in health and disease may enable us to develop potential therapies to prevent the breakdown of neurovascular coupling in the treatment of vascular brain diseases including vascular dementia, Alzheimer’s disease and stroke
    corecore