18,840 research outputs found

    A VLSI single chip (255,223) Reed-Solomon encoder with interleaver

    Get PDF
    A single-chip implementation of a Reed-Solomon encoder with interleaving capability is described. The code used was adapted by the CCSDS (Consulative Committee on Space Data Systems). It forms the outer code of the NASA standard concatenated coding system which includes a convolutional inner code of rate 1/2 and constraint length 7. The architecture, leading to this single VLSI chip design, makes use of a bit-serial finite field multiplication algorithm due to E.R. Berlekamp

    A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code

    Ionized dopant concentrations at the heavily doped surface of a silicon solar cell

    Get PDF
    Data are combined with concentrations obtained by a bulk measurement method using successive layer removal with measurements of Hall effect and resistivity. From the MOS (metal-oxide-semiconductor) measurements it is found that the ionized dopant concentration N has the value (1.4 + or - 0.1) x 10 to the 20th power/cu cm at distances between 100 and 220 nm from the n(+) surface. The bulk measurement technique yields average values of N over layers whose thickness is 2000 nm. Results show that, at the higher concentrations encountered at the n(+) surface, the MOS C-V technique, when combined with a bulk measurement method, can be used to evaluate the effects of materials preparation methodologies on the surface and near surface concentrations of silicon cells

    A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation

    A single chip VLSI Reed-Solomon decoder

    Get PDF
    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip

    Properties of holographic dark energy at the Hubble length

    Full text link
    We consider holographic cosmological models of dark energy in which the infrared cutoff is set by the Hubble's radius. We show that any interacting dark energy model, regardless of its detailed form, can be recast as a non interacting model in which the holographic parameter c2c^{2} evolves slowly with time. Two specific cases are analyzed. We constrain the parameters of both models with observational data, and show that they can be told apart at the perturbative level.Comment: 4 pages, 6 figures. Contribution to the Proceedings ERE201

    Comment on "Quantum Decoherence in Disordered Mesoscopic Systems"

    Full text link
    In a recent paper, Phys. Rev. Lett. 81, 1074 (1998), Golubev and Zaikin (GZ) found that ``zero-point fluctuations of electrons'' contribute to the dephasing rate extracted from the magnetoresistance. As a result, the dephasing rate remains finite at zero temperature. GZ claimed that their results ``agree well with the experimental data''. We point out that the GZ results are incompatible with (i) conventional perturbation theory of the effects of interaction on weak localization (WL), and (ii) with the available experimental data. More detailed criticism of GZ findings can be found in cond-mat/9808053.Comment: 1 page, no figure

    Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics.

    Get PDF
    Recent genome-wide studies conducted in European Whites have identified novel susceptibility genes for childhood acute lymphoblastic leukemia (ALL). We sought to examine whether these loci are susceptibility genes among Hispanics, whose reported incidence of childhood ALL is the highest of all ethnic groups in California, and whether their effects differ between Hispanics and non-Hispanic Whites (NHWs). We genotyped 13 variants in these genes among 706 Hispanic (300 cases, 406 controls) and 594 NHW (225 cases, 369 controls) participants in a matched population-based case-control study in California. We found significant associations for the five studied ARID5B variants in both Hispanics (p values of 1.0 × 10(-9) to 0.004) and NHWs (p values of 2.2 × 10(-6) to 0.018). Risk estimates were in the same direction in both groups (ORs of 1.53-1.99 and 1.37-1.84, respectively) and strengthened when restricted to B-cell precursor high-hyperdiploid ALL (>50 chromosomes; ORs of 2.21-3.22 and 1.67-2.71, respectively). Similar results were observed for the single CEBPE variant. Hispanics and NHWs exhibited different susceptibility loci at CDKN2A. Although IKZF1 loci showed significant susceptibility effects among NHWs (p < 1 × 10(-5)), their effects among Hispanics were in the same direction but nonsignificant, despite similar minor allele frequencies. Future studies should examine whether the observed effects vary by environmental, immunological, or lifestyle factors

    Integrability of a disordered Heisenberg spin-1/2 chain

    Full text link
    We investigate how the transition from integrability to nonintegrability occurs by changing the parameters of the Hamiltonian of a Heisenberg spin-1/2 chain with defects. Randomly distributed defects may lead to quantum chaos. A similar behavior is obtained in the presence of a single defect out of the edges of the chain, suggesting that randomness is not the cause of chaos in these systems, but the mere presence of a defect.Comment: 4 pages, 4 figure
    • …
    corecore