3,550 research outputs found

    Strong tree level unitarity violations in the extra dimensional Standard Model with scalars in the bulk

    Get PDF
    We show how the tree level unitarity violations of compactified extra dimensional extensions of the Standard Model become much stronger when the scalar sector is included in the bulk. This effect occurs when the couplings are not suppressed for larger Kaluza-Klein levels, and could have relevant consequences for the phenomenology of the next generation of colliders. We also introduce a simple and generic formalism to obtain unitarity bounds for finite energies, taking into account coupled channels including the towers of Kaluza-Klein excitations.Comment: Version to appear in Phys. Rev. D Typos corrected and remarks added to clarify figure

    Modelling of Multi-Agent Systems: Experiences with Membrane Computing and Future Challenges

    Full text link
    Formal modelling of Multi-Agent Systems (MAS) is a challenging task due to high complexity, interaction, parallelism and continuous change of roles and organisation between agents. In this paper we record our research experience on formal modelling of MAS. We review our research throughout the last decade, by describing the problems we have encountered and the decisions we have made towards resolving them and providing solutions. Much of this work involved membrane computing and classes of P Systems, such as Tissue and Population P Systems, targeted to the modelling of MAS whose dynamic structure is a prominent characteristic. More particularly, social insects (such as colonies of ants, bees, etc.), biology inspired swarms and systems with emergent behaviour are indicative examples for which we developed formal MAS models. Here, we aim to review our work and disseminate our findings to fellow researchers who might face similar challenges and, furthermore, to discuss important issues for advancing research on the application of membrane computing in MAS modelling.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Johnson-Kendall-Roberts theory applied to living cells

    Get PDF
    Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion energies of soft slightly deformable material. Little is known about the validity of this theory on complex systems such as living cells. We have addressed this problem using a depletion controlled cell adhesion and measured the force necessary to separate the cells with a micropipette technique. We show that the cytoskeleton can provide the cells with a 3D structure that is sufficiently elastic and has a sufficiently low deformability for JKR theory to be valid. When the cytoskeleton is disrupted, JKR theory is no longer applicable

    Physics Behind Precision

    Full text link
    This document provides a writeup of contributions to the FCC-ee mini-workshop on "Physics behind precision" held at CERN, on 2-3 February 2016.Comment: https://indico.cern.ch/event/469561

    Modern soil phytolith assemblages used as proxies for paleoscape reconstruction on the South Coast of South Africa

    Full text link
    South Africa continues to receive substantial attention from scholars researching modern human origins. The importance of this region lies in the many caves and rock shelters containing well preserved evidence of human activity, cultural material complexity and a growing number of early modern human fossils dating to the Middle Stone Age (MSA). South Africa also hosts the world's smallest floral kingdom, now called the Greater Cape Floristic Region (GCFR), with high species richness and endemism. In paleoanthropological research, improving our capacity to reconstruct past climatic and environmental conditions can help us to shed light on survival strategies of hunter-gatherers. To do this, one must use actualistic studies of modern assemblages from extant habitats to develop analogies for the past and improve paleoenvironmental reconstructions. Here, we present a phytolith study of modern surface soil samples from different GCFR vegetation types of the south coast of South Africa. In this study, the phytolith concentration and morphological distribution are related to the physicochemical properties of soils, the environmental conditions and the characterization of the vegetation for the different study areas. Our results show that phytolith concentration relates mostly to vegetation types and the dominant vegetation rather than to the type of soils. More abundant phytoliths from Restionaceae and woody/shrubby vegetation are also noted from fynbos vegetation and grass phytoliths are a recurrent component in all the vegetation types in spite of being a minor component in the modern vegetation. The grass silica short cells from these plants, however, suggest a mix of C3 and C4 grasses in most of the vegetation types with a major presence of the rondels ascribed to C3 grasses. The exceptions are riparian, coastal thicket and coastal forest vegetation, which are characterized by the dominance of C4 grass phytoliths

    Unitarity, BRST Symmetry and Ward Identities in Orbifold Gauge Theories

    Full text link
    We discuss the use of BRST symmetry and the resulting Ward identities for orbifold gauge theories as consistency checks in an arbitrary number of dimensions. We verify that both the usual orbifold symmetry breaking and the recently proposed Higgsless symmetry breaking are consistent with the nilpotency of the BRST transformation. Imposing the Ward identities resulting from the BRST symmetry on the 4-point functions of theory, we obtain relations on the coupling constants that are shown to be equivalent to the conditions for tree level unitarity. We present the complete set of these sum rules also for inelastic scattering and discuss applications to 6-dimensional models and to incomplete matter multiplets on orbifold fixed points.Comment: 34 pages, LaTeX (feynmf.sty, url.sty and thophys.sty included), v2:references added, v3:typos corrected, sec.3 revise

    Fermions on an Interval: Quark and Lepton Masses without a Higgs

    Full text link
    We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure

    The Perceived Size and Shape of Objects in Peripheral Vision

    Get PDF
    Little is known about how we perceive the size and shape of objects in far peripheral vision. Observations made during an artistic study of visual space suggest that objects appear smaller and compressed in the periphery compared with central vision. To test this, we conducted three experiments. In Experiment 1, we asked participants to draw how a set of peripheral discs appeared when viewed peripherally without time or eye movement constraints. In Experiment 2, we used the method of constant stimuli to measure when a briefly presented peripheral stimulus appeared bigger or smaller compared with a central fixated one. In Experiment 3, we measured how accurate participants were in discriminating shapes presented briefly in the periphery. In Experiment 1, the peripheral discs were reported as appearing significantly smaller than the central disc, and as having an elliptical or polygonal contour. In Experiment 2, participants judged the size of peripheral discs as being significantly smaller when compared with the central disc across most of the peripheral field, and in Experiment 3, participants were quite accurate in reporting the shape of the peripheral object, except in the far periphery. Our results show that objects in the visual periphery are perceived as diminished in size when presented for long and brief exposures, suggesting diminution is an intrinsic feature of the structure of the visual space. Shape distortions, however, are reported only with longer exposures
    • …
    corecore