226 research outputs found

    Surface magnetism in ZnO/Co3O4 mixtures

    Get PDF
    We recently reported the observation of room temperature ferromagnetism in mixtures of ZnO and Co3O4 despite the diamagnetic and antiferromagnetic character of these oxides respectively. Here we present a detailed study on the electronic structure of this material in order to account for this unexpected ferromagnetism. Electrostatic interactions between both oxides lead to a dispersion of Co3O4 particles over the surface of ZnO larger ones. As a consequence, the reduction of Co+3 to Co2+ at the particle surface takes place as evidenced by XAS measurements and optical spectrocopy. This reduction allows to xplain the observed ferromagnetic signal within the well established theories of magnetism.Comment: Accepted in Journal of Applied Physic

    A Configurable Sensor Network Applied to Ambient Assisted Living

    Get PDF
    The rising older people population has increased the interest in Ambient Assisted Living systems. This article presents a system for monitoring the disabled or older persons developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios

    Can environmental DNA be used to detect first arrivals of the cane toad, Rhinella marina, into novel locations?

    Get PDF
    Eradicating invasive species is difficult, but success is more likely when populations are small after arrival. The cane toad, Rhinella marina, is an invasive pest species that threatens native fauna worldwide. Increasingly, environmental DNA (eDNA) is used as a technique to monitor the presence of invasive species given its power to detect low numbers of individuals. We aimed to investigate eDNA persistence in freshwater at three different temperatures (25, 30 and 35°C) and eDNA detection thresholds for R. marina using controlled experiments in aquaria. For the latter, two water volumes and two cane toad exposure times were used (800 or 200 L volume with 5 or 30 min exposure). A 15‐ml water sample was collected from each replicated aquaria and preserved with 5 ml Longmire's buffer. Environmental DNA was extracted and four technical quantitative PCR replicates were analyzed targeting the cane toad 16S rDNA mitochondrial gene. Environmental DNA decayed rapidly in water and was reliably detected for up to 3 days after cane toad removal, regardless of the temperature treatment. Also, cane toad eDNA was detected in the water after a 5‐min initial exposure of a single individual in 800 L of water. Under the physical parameters tested here, a positive detection means that a cane toad has been in contact with the water body between 1 and 3 days prior to the sampling event. The results of the present study show the importance of eDNA for determining the presence of a species that occurs at low abundance in a small water body, such as at the onset of a cane toad invasion

    Experimental Models of Liquid Biopsy in Hepatocellular Carcinoma Reveal Clone-Dependent Release of Circulating Tumor DNA.

    Get PDF
    Liquid biopsy, the molecular analysis of tumor components released into the bloodstream, has emerged as a noninvasive and resourceful means to access genomic information from cancers. Most data derived from translational studies showcase its numerous potential clinical applications. However, data from experimental models are scarce, and little is known about the underlying mechanisms and factors controlling the release of circulating tumor DNA (ctDNA) and cells (CTCs). This study aimed to model liquid biopsy in hepatocellular carcinoma xenografts and to study the dynamics of release of ctDNA and CTCs; this included models of intratumoral heterogeneity (ITH) and metastatic disease. We quantified ctDNA by quantitative polymerase chain reaction (PCR) targeting human long interspersed nuclear element group 1; targeted mutation analysis was performed with digital droplet PCR. CTCs were traced by flow cytometry. Results demonstrated the feasibility of detecting ctDNA, including clone-specific mutations, as well as CTCs in blood samples of mice. In addition, the concentration of ctDNA and presence of tumor-specific mutations reflected tumor progression, and detection of CTCs was associated with metastases. Our ITH model suggested differences in the release of DNA fragments impacted by the cell-clone origin and the treatment. Conclusion: These data present new models to study liquid biopsy and its underlying mechanisms and highlighted a clone-dependent release of ctDNA into the bloodstream

    Performance Evaluation of a Biometric System Based on Acoustic Images

    Get PDF
    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications
    • 

    corecore