We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter 1

MATLAB COM
Integration for Engineering Applications

Mariano Raboso, Maria I. Jiménez, Lara del Val,
Alberto Izquierdo, Juan J. Villacorta and Myriam Codes

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46471

1. Introduction

COM (Component Object Model) is a Microsoft framework designed for Windows
platforms for developing and integrating software components. Software components and
reusability techniques have interesting advantages, as component base software engineering
has shown through the last years.

The most powerful idea around component-based software, is that components can be
implemented by a programmer and reused by others without having knowledge of the
source code. Components are binary packages that can be deployed and further integrated
with others written on different programming languages. As component selection and
integration is usually an easy and well-known process, components are also called COTS
(Commercial Off-The-Shelf).

Software components are also very useful for evaluating several implementations for
different vendors. Engineers can analyse and compare them in terms of cost, performance
and security. Furthermore, component software integration is a key tool for rapid-
prototyping software developments.

A component may be implemented with a high specialized language suitable for specific
tasks and used by clients written on more general languages. For example, we could be
interested on implementing a specialized component in Matlab, and integrating it into a
GUI written on Visual Basic or Tcl/Tk. This situation may be comparable to software written
on assembly language (specific and low-level) and linked into C programs using libraries or
object code.

On the other hand, using software components also involves some risks. Software development
must follow its own methodologies, standards and rules that must be taken into account when

© 2012 Raboso et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http:/creativecommons.org/licenses/by/3.0), which permits

) . unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
open science | open minds

4 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

integrating external objects made from third parties. Fortunately this can be accomplished by
following the rules that the component-based software methodologies suggest.

Microsoft has developed some technologies around COM. OLE (Object Linking and
Embedding) and DDE (Dynamic Data Exchange) were the first tools capable of transferring
objects between applications and creating links among them. They were available on the
earliest Windows versions. In 1996 OLE technology was fused with Internet capabilities and
was renamed as ActiveX, providing ActiveX controls, Active Documents and Active Scripting.

COM+ are COM based services first developed for Windows 2000. They extend COM
technology with advanced services to manage resource pools, disconnected applications and
event publication.

DCOM (Distributed Component Object Model) is a Microsoft technology that enables
communication links among distributed components running on network interconnected
machines. DCOM extends COM and COM+ using new services based on DCE (Distributed
Computing Environment) and RPC (Remote Procedure Call).

Nowadays, Microsoft recommends using .Net technology instead, as it has already
integrated COM services. Many powerful programming languages can use COM
components; Visual Basic, Matlab, Visual C++, C# and Tcl/Tk are good examples.

The next sections will describe COM technology and related Matlab resources. Section 2
explains COM basis and history, as well as some terminology that will be useful to the
reader for better understanding the following concepts. Section 3 describes Matlab COM
interface, specifically the COM automation server and interface methods. Some real
examples given will be useful to the novel engineer that wants to work with COM
technology. In Section 4, a real application called XBDK that makes use of COM services is
described. Finally, some conclusions are made to summarize this technology and to give the
reader the opportunity to explore deeper inside COM and .Net technology.

2. Microsoft COM technology

A COM component is an instance of the component object class that runs on the COM
server and is accessible from a variety of clients. There are several platforms that can serve
COM objects and many clients that can use them.

Matlab COM components are very useful to integrate tasks implemented on this language
and exported to others applications. These components can be used later in Microsoft Office
Applications (for example Microsoft Excel), Microsoft Visual C++, C#, VB, Tcl/Tk, or even
other Matlab clients, in local or distributed applications.

2.1. COM interfaces

COM component implementation is hidden to clients through convenient encapsulation, as
the only way to access the component is through a public interface. An interface is a set of

MATLAB COM Integration for Engineering Applications

public methods, events and properties declarations defining the way an encapsulated object
can be accessed. The component manufacturer is responsible for providing the corresponding
interface information, with the necessary method details. As this information is all the
knowledge of the component, it is necessary to give as much information as possible in order
to ensure the component is suitable to be integrated into a third party system. Interface details
are usually transparent to users. Applications as Microsoft Visual Studio provide tools for
using COM objects and other resources for .Net platforms (Gunderloy, 2001).

There are four basic COM interfaces:

e IUnknown. It is a basic standard interface that is compulsory to every COM object.

e IDispatch. It is a standard interface for obtaining general information about the object
and specifically about methods and properties than can be accessible.

e Custom. It is a custom interface. It can be user defined.

e Dual. Itis a combination from IDispatch and Custom.

These interfaces are provided by corresponding server types.

2.2. COM clients

A COM client is a program that uses COM Objects that are provided by COM servers. An
example can be a spreadsheet built with Microsoft Excel integrated into a Matlab client.
Matlab can be used as a COM client or server.

In this chapter, we are concerned with developing COM server objects using Matlab.
Therefore, Matlab client details will be omitted.

2.3. COM server types

COM model defines three types of servers, depending on the interfaces implemented (The
Mathworks, 2012):

e Automation. This type of server can be accessed by all clients. It supports the OLE
Automation standard, and servers are based on IDispatch interfaces.

e Custom. These servers are used when a special client requires specific and faster access.

e Dual. It is a combination of the above types.

Depending on the locations of the component and client the server can be one of these two
types:

e In-Process server. In this configuration, the client accesses the components using a DLL
(dynamic link library) or an ActiveX. Both client and server run in the same process so
they share a unique context.

e Out-Process server. The component is implemented as an independent executable
(.exe) file. The client can access this program with either local or remote configuration.
It depends on the location of the client and server. For local access, performance can be
reduced compared to an In-Process configuration. For remote access configuration, it
can be only accomplished on systems supporting DCOM (Distributed COM).

5

6 MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

2.4. Programmatic identifiers

A programmatic identifier is a unique string that identifies an instance of a COM object. It is
usually defined by the vendor.

Users can access different services using different identifiers. For example, Matlab provides
three identifiers with several versions to provide such services. If there were more than one
version of the software installed, each one would have its own identifier.

Figure 1 shows how a programmatic identifier can be found. It corresponds to an object
available in the Windows registry. Besides finding out the existing programmatic identifiers,
explore the registry (regedit32.exe) is a good way to verify if the COM servers are properly
installed. Another option is to use the Microsoft Visual Studio object explorer or reference
explorer.

:!. gEditor del Registro J._‘-]kfﬂ

archivo Edicion Mer Eavoritos Ayuda

ion Ll Nombre Tipo
@{Predeterminadu) REG_S5Z

1 CLEID
h_l curier

|1 MotInsertable

Matlab. Application. S
Matlab. Application. &
Matlab, Application. 7
Matlab. application. Single
Matlab. Application. Single. &
Matlab, Application, Single, 7
MATLAE. AutoServer
MATLAB, AutoServer,7
MATLAE, AutoServer,Single
MATLAE. AutaServer, Single. 7
Matlab, MLEval
Matlab.MLEval &

Matlab, MLEval, 7

mce, CCAProperties

mce, CCSproperty
mice,chartwizard

mce. IMCEResource

mee, JIMCEResources

e, MiniCubeEditor

rrce R

MCLMMControl
MZIMMZontral, 1
MDACYer, Yersion
MDACYer, Yersion, 2,71

L L

Mi PCYHKEY _CLASSES_ROOT\Matlab, Application

Figure 1. Matlab programmatic identifiers for different package versions.

This is very useful if the client must start an instance of a specific version of the software,
because each version has its own programmatic identifier. The identifier has also a suffix
with a major, followed by a minor, version to identify it (for example 7.3). If no identifier is
used, the most recently version will be selected. This situation is not very common, but it
can be used to compare the different behaviour of the different versions.

MATLAB COM Integration for Engineering Applications

3. Matlab COM server

Matlab COM server is included in the default software installation. With COM enabled,
developers can implement COM components and use other COM objects. Developers may
insert Matlab applications on web (html code) pages or use Microsoft Excel spreadsheets to
present numerical results.

Integration of COM Matlab objects can also be distributed, so components may be run from
remote machines. This is mainly used for developing parallel solutions, which are typical on
many engineering applications, specifically in digital signal processing.

The next sections will explain how Matlab COM server works. Furthermore, COM objects
are illustrated with some real examples.

3.1. Matlab programmatic identifiers

As shown above in figure 1, Matlab provides three programmatic identifiers to access COM
servers:

e Matlab.Application. This identifier is used to start a Matlab Automation server on an
independent window. A command window will appear to enter commands. Note that
if several versions exist, the most recently Automation Server version run will be
selected.

e Matlab.Autoserver. A Matlab Automation server is started on an independent
command window. The most recent install version is selected if no version is specified.

e Matlab.Desktop.Application. With this configuration, a Matlab full desktop is started.
The most recently installed version will run, if no version is specified.

By running the registry tool in Windows, we will be able to find out the identifiers for
accessing the COM servers (see figure 1):

e Matlab.Application
e Matlab.Application.Single
e Matlab.AutoServer
e Matlab.AutoServer.Single

The single attribute will make the server to run on an exclusive mode. Otherwise the server
will starts on a shared configuration.

3.2. Matlab Client/Server architecture

Matlab client-server architecture defines how client and server relationships can be
established. Four different models are available:

e Matlab client (In-Process Server). Using this architecture, Matlab clients access services
by ActiveX controls or DLL libraries. Both client and server run on the same process.
Communication is extremely efficient as both share the same context. If a DLL is used, it
runs on a separate window.

7

8 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

Matlab client (Out-Process Server). Client accesses server resources using an executable
(.exe) file. The component instantiates on a separate process. Communication is not as
effective as in the In-Process configuration.

Matlab application and Matlab server (Automation Server). Using this configuration, a
client application (called controller) accesses the services provided by the Automation
server. The services make possible to run commands and transfer variables into Matlab
workspace. The server may run locally or on a remote machine using DCOM services
(see section 2.3). This configuration is affected from networks issues, specifically by
bandwidth bottlenecks and latency problems.

Client application and Matlab server (engine server). Matlab offers a faster interface
called IEngine to be used with C, C++ and Fortran clients.

3.3. Linking references to COM servers

When using developing tools as Microsoft Visual Studio, some previous configuration must
be made before writing the code. Specifically, COM references must be included into the
project configuration. Figures 2 and 3 show how these references can be added:

©0 AccesoMatlabVE - Microsoft Visual Studia

|-]

Archivo Editar Ver Proyecto | Generar Depurar Equipo Dates Formato Herramientas VMware Prueba Analizar Ventana Ayuda

=
iBBas 4@
]

=}
oy
il
=
[
a
0
o
g
1
g

j S S ‘_'/‘ H] ﬂ Agregar Windows Forms...

Agregar control de usuario...
Agregar componente..,

Agregar médulo...

Excluir del proyecto

Debugging ended. ..

=] Resultados |- REEUEREGTNELT LT

RS B -

= Propiedades

Figure 2. Visual Studio tool for adding external references.

% Agregar clase., Mayts.+Alt+C

Forml System.Windows.F F x
| Agregar nuevo elemento... Ctri+Mayus + A O SRS N M A BAE
-l Agregar elemento existente... Mayiis.+ Alt+ A i | == | 5|

Backgroundlmag Tile -

CancelButton (ninguno)

&1 Mostrar todos los archivios
Buttor - CausesValidation True
1 Agregar referencia... ContextMenuStri (ninguno)
Agregar referencia de servicio... ControlBox True
Establecer como proyecto de inicio Cursor Default
Actualizar elementos dej cuadro de herramientas de proyecto DouhleButfered [Fatse
: Enabled True
=| Propiedades de AccesﬂMatlabVF... b Font Microsoft Sans Serif: 8,25p
] ForeColor - ControlText N |
FormBorderStyle Sizable
HelpButton False
Button3 i lcen F_QI (Tcona)
ImeMode MNoControl
IsMdiContainer False
KeyPreview False =
Language (Predeterminadao)
Localizable False
i+ Location 0; 0
Locked False

MainMenuStrip (ningunc)
MaximizeBox True
P MaximumSize 0;0

MinimizeBox True
» MinimumSize 0:;0
Resultados ¥R Opacity 100%
Mostrar resultados desde: |7\f7Mygare 'II 7 ! JElES ! =% ! = = Padding 0;0:00
VMuare Virtual Debugger loaded successfully. . RightToleft Mo =
N Text

Texto asociado al control,

By clicking on project tab and selecting “add reference”, the references window appears,
and shows the applications that provides COM servers (figure 3).

MATLAB COM Integration for Engineering Applications
=8 Agregar referencia i
| MET | CoM | Proyectes | Examinar | F‘.eciente|
Nembre de component:a Versidn de Ty... Ruta de acceso =
Mathworks: Selector by GMS 1.0 CAMATLABT toolbox\dials\ocdMWSelector.ocx
Mathworks: Slider by GMS 10 CAMATLABT toolbox\dials\ oot MWSlider.ocx
Mathworks: Strip Chart by GMS 1.0 CAMATLABT toolbox\dials\ oot MWStrip.ocx
Mathworks: Toggle by GMS 10 CAMATLABT \toolbox\dials\o c\MWToggle.ocx 3
i Matlab Application (Version 7.0) Type Library 1.0 CAMATLABT \bin\win32\mlapp tib -
Mdflnterop 1.0 Type Library 1.0 Ch\ProgramDatat\Mational Instruments\ MDFPBinRTE\MdfIntero...
MhegVM 1.0 Type Library 1.0 ChWindows\eHomeWhegVM.dIl
micaut 1.0 Type Library 1.0 C\Program Files (x86)\Common Files\Microsoft Shared\Inkmi...
Microsoft Access 14.0 Object Library 9.0 C\Program Files\Microsoft Office\Officel 4\MSACC.OLE
Microsoft ActiveMovie Control 20 Ch\WindowsiSystem32hamcompat.tib
Microsoft ActiveX Data Objects (Multi-dimensi.., 2.8 C\Program Files (x86)\Common Files\Systermtadomsadomd2..,
Microsoft ActiveX Data Objects (Multi-dimensi... 6.0 C:\Program Files (x86)' Common Files\System\ado'msadomd.dll b
Aceptar l | Cancelar

Figure 3. Adding Matlab COM references.

The reference selected is identified by a version number, and a path for the library location.
If the server is located on a remote machine, then, the identifier will contain the path to the
server having Matlab installed. The next figure shows a remote server accessible by the path

“\ \ hiseuibd01\ home$\matlab2\bin”:

r_ greganreferencia

NET COM]Proyectos]

Mombre de componente | Version de ... | Ruta de acceso |L__.|
Mathworks: Toggle by GMS 1. C:\Programas\MATLABT \tool. ..
Matlab Application (Yersion S.... 1 hiseuibdo1ihomegimatlab2i,. ..
Matlab Application (Version 6.... 1. c:\programasimatlabé. S\bini...
Matlab Application (Yersion 7.... 1 c\programasimatlab?biniwi,., =
MediaPlayer 1.0 Type Library 1 C:\archivos de programalWi...
Messenger API Type Library 1. Ci\Archivos de programaiMe...
1
1.
1.
1.
1.
q.

"

"

Messenger Content Installer C:\archivos de programalMs...
Messenger Extensions Type Li... C:\archivos de programaiMe...
Messenger Plug-Ins Type Libr. .. C:\archivos de programaiMs. ..
Messenger Private Type Library C:\Archivos de programaiMe...
Messenger Type Library Ci\Archivos de programaiMe...
Mirrnsnft Arress 1.0 Ohiert _.. C:\archivas de araaramalMic... 54

DDDDDDGDDGDD

Figure 4. Matlab COM references for different package versions and locations.

References to other different hosts make it possible to access Matlab remote servers using
DCOM. With this configuration Matlab software must be also installed on the local host,
because some Matlab components must be accessible locally.

Once the references are added, Matlab objects links can be used in the source code. This is
usually made by the “new” construct or “CreateObject” function. If the interface IMLApp is
used, the methods available can be shown by the source code interactive help system.
Otherwise methods can be viewed using the object explorer menu option (figure 5 and 6):

9

10 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

©@ AccesoMatlabVB - Microsoft Visual Studio ===
Archivo Editar | Ver | Proyecto Generar Depursr Equipo Datos Formato Hemamientas VMware Prueba Analizar Ventsna Ayuds
{ d* (5] Codiga 77 [l -G BT

Disefiador Mayis.+F7 5| e

= =
Explorador de soluciones Ctrl+W, 5
Team Explorer Ctri+W, M
§ ~ Propiedades
Explorador de servidores Ctrle W, L
Jerarquia de llamadas Ctrl+ W, K
Vista de clases Ctrl+W, C
Ventana Definicién de codigo Ctri+W, D =
€ Default
Examinador de objetos Ctrl+W, J = =
DoubleBuffered False
Lista de errores Ctil+W, E Enabled Tiue
Resultados Ctri+W, O Font Microsoft Sans Serif; 8,25p
Pagina principal ForeColer Il ControlText
Ficta e farmne CtrlaW, T FormBerderStyle Sizable
Cuadrs de hesrariiientas CuleW, X HeloButon| TFoke
Rt d N Icon a (Icono)
esuttados dela bisqueda ImeMode NoControl
Otras ventanas L IsMdiContainer False |
Barras de herramientas v KeyPreview False
Pantalla completa Maytis.+Alt=Entrar Language (Predeterminado)
= Localizable False
Orden de tabulacién
Location 0:0
Navegar hacia atras Ctrl+- Locked Falce
Noveger hacia delante Ctrlé M MainMenuStrip (ninguno} 3
Tares siguisnte MaximizeBox ~ True i
Tates anterior » MadmumSize 0;0
MinimizeBox True
Ventana Propiedades Ctri+W, P MinimumSize 0:0
Pagines de propiedades Opacity 100%
Padding 0;0;0;0
RiahtToLeft Mo =,

Figure 5. Visual Studio object explorer window.

oo AccesoMatlabVB - Microsoft Visual Studio (= ==
Archive Editar Ver Proyecto Generar Depursr Equipp Datos Heramientas VMware Prueba Analizar Ventana Ayuda

A e % a9 - - -5 b [Debug - R G BT

£l & 3|05 o b [§] B el 02 | =l
iR DD G R,

Examinador de objetos % Jiun Bt Forml b [Disefio]* Explorador de soluciones Team Explorer ~ Propiedades

Lk

Examinar: | Mi solucion e | |5 E
| <Busqueda> B>
» 5@ AccesoMatlabVe Feval(String, Integer, ByRef Object, [Object], [Object], [Object], [Object], [Ohject], [Obj
i3 Interop.MLApp % GetFullMatrix(String, String, ByRef System.Array, ByRef System.Array)
2 {} MLApp & GetWorkspaceDsta(String, String, ByRef Object)
“~“ DIMLApp @ MaximizeCommandWindow()
=2 DIMLEval % MinimizeCommandWindow()
el 1L App | @ PutCharArray(String, String, String)
%4 MLApp @ PutFullMatrix(String, String, System.Array, System.Array)
% MLEval % PutWorkspaceData(String, String, Object)
{3 Microsoft.VisualBasic W Quit]
> .3 mscorlib % Brecute(String) As String
b -3 System & GetCharArray(String, String) As String
-3 System.Core = Visible As Integer
i3 System.Data
> .03 System.Data.DateSetExtensions
» .3 System.Deployment
.3 System.Drawing

so3ep ap sauabyQ) gl

i3 System.Windows.Forms
3 System.Xml
[+ -3 System.Xml.Ling A

Public Interface IMLApp
Miembro de MLApp

Resultados

Mostrar resultados desde: | VMware
VMware Virtual Debugger loaded successfully.

Debugging ended. ..

Figure 6. Matlab MLApp interface methods available.

Figure 6 shows the available interface methods. The most useful are:

e MLApp.Execute(). This method executes a Matlab command on the COM server.

e MLApp.Feval(). This method evaluates a Matlab function.

e MLApp.GetFullMatrix(). This method is useful to copy a matrix from Matlab workspace.
e MLApp.PutFullMatrix().This method is useful to copy a matrix into Matlab workspace.

MATLAB COM Integration for Engineering Applications

e MLApp.PutWorkspaceData(). This method is used to put variables into Matlab
workspace.

e MLApp.GetWorkspaceData(). This method is used to read variables from Matlab
workspace.

e MLApp.Quit(). It must be used to force exit when the host application finalizes.

3.4. Accessing Matlab resources from the source code

The next sections will describe how to create and reference COM objects using different
languages.

3.4.1. Creating COM objects

Microsoft .Net technologies provide resources to access COM objects from different
languages. For convenience, the following examples are written in Visual Basic. Users that
prefer other languages may use COM objects and references on the same way.

The following example makes use of the easy graphical user interface that provides Visual
Basic. Matlab specific routines are accessed by adding references into the Visual Basic code.
The next code is an example of running a Matlab server that exchanges data from the
workspace. The application simply runs an interactive tool to access some Matlab resources
using COM services.

Public Class Forml
'Dim Matlab as Object and use CreateObject method
'use MLApp library and New MLApp method to see the methods available
Dim MatlabCommand As String
'Dim Matlab As MLApp.MLApp
Dim Matlab As Object
Dim ArrayA() As Double = {1, 2, 3, 4}
Dim ArrayB() As Double = {5, 6, 7, 8}
Dim ArrayC() As Double = {0, 0, 0, 0}
Dim ArrayImg() As Double = {0, 0, 0, 0}
Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
Matlab = CreateObject ("Matlab.Application")
End Sub
Private Sub Button3 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button3.Click
Matlab.Quit ()
Me.Close ()

End Sub

Table 1. GetFullMatrix() and PutFullMatrix() methods example.

Note that before using COM objects, some declarations must be made in order to instantiate
the objects.

Figure 7 shows how the “execute()” method can be used for running commands inside the
Matlab environment. Methods “GetFullMatrix()” and “PutFullMatrix()” are used in the
example to exchange data between the application and the Matlab workspace.

11

12 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

A4 Matlab COM Execution Bxample =] -]

Command Window
Run Command | C=A+ZB

Put Matrix A=[1234] B=[5678]
..

Matlab Function Parameter
Evaluate Function

Resuft Window
C=11141720

[satmatAB |

SALIR

Figure 7. Matlab Execute(), PutFullMatrix() and GetFullMatrix() interface methods example.

Matlab Execute() method provides a powerful tool to use Matlab server. It is probably the
most frequent method used. The source code associated with the task shown in figure 7 is

the following;:

Private Sub Button2 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click

Dim StringResult As String

MatlabCommand = CommandBox.Text

StringResult = Matlab.Execute (MatlabCommand)

ResultBox.Text = StringResult
End Sub

Private Sub Button4 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Buttond.Click
Dim ArrayA () As Double = {1, 2, 3, 4}
Dim ArrayB() As Double = {5, 6, 7, 8}
Dim ArrayC () As Double = {0, 0, 0, 0}
Dim ArrayImg() As Double = {0, 0, 0, 0}

Matlab.PutFullMatrix ("A", "base", ArrayA, Arraylmg)
Matlab.PutFullMatrix ("B", "base", ArrayB, Arraylmg)
End Sub

Private Sub Button5 Click (sender As System.Object, e As
System.EventArgs) Handles Button5.Click

Dim ArrayC() As Double = {0, 0, 0, 0}

Dim ArrayImg() As Double = {0, 0, 0, 0}

Matlab.GetFullMatrix ("C", "base", ArrayC, ArrayImg)

ResultBox.Text = "C= " + ArrayC(0).ToString() + " " +
ArrayC(1l) .ToString() + " " + ArrayC(2).ToString() + 0" 4
ArrayC(3) .ToString ()

End Sub

Table 2. Matlab Execute(), GetFullMatrix() and PutFullMatrix() methods example.

MATLAB COM Integration for Engineering Applications

Figure 8 shows how the Feval() method can be used to evaluate a trigonometric function
inside Matlab environment. This method allows parameter exchange, so you can pass or
receive the necessary arguments (sin(7) in the example).

4\ Matlab COM Execution Example = 3]
Command VWindow
[SetmaTLAB | [RunCommand | sini1416)
Put Matrix A-[1234] B=[567.3]
Get Matrix c...
Matlab Function Parameter

Result Window
-7.34641020664353E-06

SALIR

Figure 8. Feval() interface method.

The source code fragment for the application that it is shown in figure 8 is the following:

Private Sub Button6 Click (sender As System.Object, e As
System.EventArgs) Handles Button6.Click

Dim MatlabFunction As String

Dim out As Object

Dim x As Double

x = Parameter.Text

MatlabFunction = FunctionBox.Text
Matlab.Feval (MatlabFunction, 1, out, Xx)
ResultBox.Text = out (0) .ToString

End Sub

Table 3. Feval() method example.

Finally, the next code fragment shows an example for transferring data between the
application and Matlab workspace, using “PutWorkspaceData()” and
“GetWorkspaceData()” interface methods:

13

14 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

Private Sub Button7 Click (ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button7.Click
Dim nombre As String

Dim matriz(,) As Integer = New Integer(,) {{0, 1}, {2, 3}}
Dim S2X2(,) As Short = New Short(,) {{5, o6}, {7, 8}}
nombre = TextBox5.Text

Matlab.PutWorkspaceData (nombre, "base", matriz)
End Sub

Private Sub Button6 Click (ByVal sender As Object, ByVal e As
System.EventArgs) Handles Button6.Click

Dim resultado As Object

Dim nombre As String

nombre = TextBoxb5.Text
Matlab.GetWorkspaceData (nombre, "base", resultado)
TextBox7.Text = resultado

End Sub

Table 4. Example using PutWorkspaceData() and GetWorkspaceData() interface methods.

Both examples transfer variables using the default “base” workspace and custom variable
names read from a text box.

3.4.2. Creating COM objects using Tcl/Tk

Tcl (Tool Command Language) is a very powerful and easy language to learn. It is useful for
automation, test, programming embedded systems, web applications and database access
(Tcl community, 2009).

It was developed in 1988 by John K. Ousterhout at the University of California, and later
maintained by Sun Microsystems Laboratories by the group SunScript. One of its great
advantages is that it is multiplatform. There are versions for Windows, Mac OS X and most
versions of Unix: Linux, Solaris, IRIX, AIX, BSD...

The language is constantly evolving, so new versions of interpreters are frequently released,
along with extensions that extend the functionality of the language.

Tcl is flexible and open source, so any developer can investigate the language details,
include new features, modify existing ones, and even develop new commercial versions.
Extensions are usually of the same type of license, although it depends on each developer.

Associated with Tcl, there is a toolkit for developing graphical user interface called Tk (Tool
Kit), which is the most popular Tcl extension. Tk was also developed by John Ousterhout
and provides an interpreter that adds Tcl commands and others capable of creating
graphical user interface components such as buttons, panels, combo boxes and dialog boxes.
It is usually distributed into a package called Tcl/Tk.

Recent versions of Tcl/Tk include a package to access COM objects through a very extensive
API, replacing the traditional interpreter by a compiler that translates source code to
bytecodes, which then runs another interpreter (Huang, 2006). Although this improvement

MATLAB COM Integration for Engineering Applications

allows substantial increase of the execution speed, it cannot be still compared with other
compiled languages.

The following code shows how Matlab COM server can be created using a Tcl/Tk script:

package require tcom
set application [::tcom::ref createobject "Matlab.Application.7"]

Table 5. Example creating a COM reference from Tcl.

Once the reference is created, all methods will be accessible. The next lines show how to run
a Matlab .m program and get the result (Matlab diagram variable) from the “base”
workspace, into the local variable “diagrama”.

Sapplication Execute "run('C:/smi.m")"
Sapplication GetWorkspaceData "diagram" "base" “diagrama"

Table 6. Example using Execute and GetWorkspaceData interface methods for Tcl.

4. XBDK, a TCL/TK platform using Matlab and other COM objects

XBDK stands for XML-Based Beamforming Development Kit. It is a software platform
designed for aiding the engineer through the beamforming development process (Raboso et
al., 2003, 2007, 2009). It is a CASE (Computer Aided Software Environment) tool that
integrates several interesting applications related to software modelling, simulation and
XML parsing and manipulation. The applications are written in Java and Matlab, and are
integrated using a script language (Tcl/Tk).

EXBDK a0, - B[]
Archive Opciones Configurar Avuda
== | & B @ Repositorio
- Baseline
|MS pans ook ﬂ ,8_ Traductor Simulink.
Repozitorio | Exploradar de la | LConstructar de Sistemas de | Generador de | Wisor de Componentes | Wizor de Conformadares
Baseline Generadar de Modelos Modelos en Matlab
¥isor de Componentes
Modelo L-1 Sirnular Matlab
| C:/Documents and Settingz/mrabozoma/E scritorio/B azeline/modelado/L1 /determinista. «ml
Seleccionar modelo L-1 | | Abrir modelo L-1 | Parsear modelo L-1 | | Walidar modela L-1
Construir fichero MATLAE
Traduci aMATLAB | | Simular en MATLAB |

Traductor Simulink -> =ML #BDK 1.0 |Sun. 15-0ct-2008 |tclitk w8 4.13

Figure 9. XBDK main menu.

15

16 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

Three COM servers are used for implementing different tasks:

e Matlab COM server is used for running Matlab programs for simulation tasks.
e Altova XML COM server is used for XML parsing and validation.
e Microsoft Excel COM server is used for data management.

XBDK uses a data model that gives a high-level abstraction management of a variety of
signal processing systems, specifically for Beamformers (Raboso et al. 2003). Beamformers
are array signal processing systems that process the receiving or transmitting signals of an
array of sensors (antennas) for obtaining interesting radiation properties as high
directivity, low sidelobe levels or nulls for some directions of arrivals. Beamformers
developed with XBDK are described using XML language, providing a natural human
description of such systems. The abstraction model architecture is shown in figure 10. The
specific tools to manage the information of each level are located at the right side of each
layer.

SYSTEMS MODELING RystEms Bulldsr
Application
APPLICATION BUILDING Builder
Component
MANIPULATION Editor
Repository

Figure 10. Beamforming XML data representation.

Beamformers are designed and later written in XML using two abstraction levels
corresponding to the upper two levels of the pyramid. For XML data manipulation, files
must be well-formed and validated. As XBDK is also responsible of these tasks, this tool
integrates several routines that use another COM server designed by Altova
(AltovaXML).

The next figure and source code below shows a .Net example performing validation and
well-forming tasks. Note that the Altova COM server must be started before the methods
are called. As a result, a window with the server is automatically launched. This window
can be push into background until the application is closed. As the quit() method is not
implemented in the interface, close operation must be done manually with CTRL+C key
combination or using the task manager.

MATLAB COM Integration for Engineering Applications
o NETTest [E=5(EE 5
|C MwserstnvidiahDocumentstL2_Conformador 1 xaml
|C:"-J.lsers"-.n\ridia"-.Documerds"-.LZ_ConforrnadorGasicoxsd
Well-Formed |True
Valid |True
Start AltovaXML
Figure 11. Beamforming XML data representation.
The following code corresponds to the example below:
Private Sub Buttonl Click (ByVal sender As Object, ByVal e As
System.EventArgs) Handles Buttonl.Click
Dim resultado As String
AltovaXMLNET.XMLValidator.InputXMLFileName = TextBoxl.Text
AltovaXMLNET.XMLValidator.SchemaFileName = TextBox4.Text
resultado = AltovaXMLNET.XMLValidator.IsWellFormed ()
TextBox2.Text = resultado
If (resultado) Then
'resultado = AltovaXMLNET.XMLValidator.IsValid()
resultado =
AltovaXMLNET.XMLValidator.IsValidWithExternalSchemaOrDTD ()
TextBox3.Text = resultado
Else
TextBox3.Text = "The document is not well-formed"
End If
End Sub
Private Sub Button2 Click (sender As System.Object, As

System.EventArgs) Handles Button2.Click
AltovaXMLNET = New Altova.AltovaXML.Application
End Sub

Table 7. Example using AltovaXML COM server.

5. Conclusions

COM technology is a useful tool for integrating software from different vendors.

This is

specifically interesting for engineering applications, which have to integrate a great variety

of software functionality, from specialized and low-level task, to intuitive GUISs.

Fortunately, software component industry has provided solutions to properly combine
software components to get a complete solution without implementing the software from
scratch. This can be made using reusability techniques following the standards defined by

the Component Base Software Engineering (CBSE).

17

18 MATLAB — A Fundamental Tool for Scientific Computing and Engineering Applications — Volume 2

Engineers working with Matlab and other software can take advantage of CBSE using COM
and .Net technologies from Microsoft. Furthermore, integrating different objects from
different applications accelerates software development and reduces costs. Today, COTS
(Commercial Off-The-Shelf) components are ready to be integrated into the engineering
applications and vendors exploit these advantages developing components while assuring
quality and standard conforming.

After reading this chapter, I expect that the interested reader can take into account
component technology on their future projects, and gain effectiveness on the overall
software development process.

Author details

Mariano Raboso and Myriam Codes
Universidad Pontificia de Salamanca (Facultad de Informatica), Spain

Maria I. Jiménez, Lara del Val, Alberto Izquierdo and Juan J. Villacorta
Universidad de Valladolid, Spain

Acknowledgement

This research has been supported by projects: 10MLA-IN-SO8EI-1 (Pontifical University of
Salamanca), and PON323B11-2 (Junta de Castilla y Ledn). I also want to thank the work made
by professors Maribel and Domingo, who carefully made the technical review of the chapter.

6. References

Gunderloy, M. (2001). Calling COM Components from .NET clients, In: MSDN Library,
23.03.2012, Available from: http://msdn2.microsoft.com/en-us/library/ms973800.aspx
Huang, C. (2006). Tcom, In: Access and implement Windows COM objects with Tcl, 23.03.2012,

Available from: http://www.vex.net/~cthuang/tcom/

Raboso, M.; Izquierdo, A. & Villacorta J.J. (2003). Beamforming Systems Modeling using
Component Reusability with XML Language, Proceedings of the International Signal
Processing Conference, ISPC 2003, Dallas, Texas, USA, March 31-April 3, 2003.

Raboso, M. (2007). Beamforming Systems Modeling Using XML Language, based on Software
Component Reuse, ProQuest Information and Learning, ISBN 978-0-549-26134-6, USA
Raboso M. ; Izquierdo A.; Villacorta J.; del Val L. & Jiménez, M. (2009). Integracién de
componentes COM de MATLAB/SIMULINK en el entorno CASE XBDK para el
modelado de sistemas de conformacion de haz. Ingeniare, Revista chilena de ingenieria,

Vol.17, No.1, (January 2009), pp. 122-135, ISSN 0718-3305

Tcl community (2009). Tcl and Tk manual pages, In: Tcl/Tk Documentation, 23.03.2012,
Available from: http://www.tcl.tk/doc/

The Mathworks (2012). MATLAB COM Automation Server Support, In: Matlab R2012a
Documentation, 23.03.2012, Available from:

http://www.mathworks.es/help/techdoc/matlab_external/brdOv3w.html

