268 research outputs found

    Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review

    Get PDF
    Metals are essential in our daily lives and have a finite supply, being simultaneously contaminants of concern. The current carbon emissions and environmental impact of mining are untenable. We need to reclaim metals sustainably from secondary resources, like waste. Biotechnology can be applied in metal recovery from waste streams like fly ashes and bottom ashes of municipal solid waste incineration (MSWI). They represent substantial substance flows, with roughly 46 million tons of MSWI ashes produced annually globally, equivalent in elemental richness to low-grade ores for metal recovery. Next-generation methods for resource recovery, as in particular bioleaching, give the opportunity to recover critical materials and metals, appropriately purified for noble applications, in waste treatment chains inspired by circular economy thinking. In this critical review, we can identify three main lines of discussion: (1) MSWI material characterization and related environmental issues; (2) currently available processes for recycling and metal recovery; and (3) microbially assisted processes for potential recycling and metal recovery. Research trends are chiefly oriented to the potential exploitation of bioprocesses in the industry. Biotechnology for resource recovery shows increasing effectiveness especially downstream the production chains, i.e., in the waste management sector. Therefore, this critical discussion will help assessing the industrial potential of biotechnology for urban mining of municipal, post-combustion waste

    Assessment of seasonal changes in water chemistry of the ridracoli water reservoir (Italy): Implications for water management

    Get PDF
    The Ridracoli artificial basin is the main water reservoir of the Emilia-Romagna region (Northeast Italy). The reservoir was made by construction of a dam on the Bidente River in 1982. It is used as the main drinking water supply of the region and for hydropower production. The physical and chemical parameterseters (temperature, pH, electrical conductivity, and dissolved oxygen) of shallow water are continuously monitored whereas vertical depth profiles of water chemical data (major anions and cations, as well as heavy metals) are available on a bimonthly base. The dataset used in this research is related to the years 2015 and 2016. Data show that the reservoir is affected by an alternation of water stratification and mixing processes due to seasonal change in water temperature, density, and the reservoir water level. In late summer and winter months, the water column is stratified with anoxic conditions at the bottom. During the spring, on the other hand, when storage is at its maximum, water recirculation and mixing occur. The reservoir is characterized by a dynamic system in which precipitation, dissolution, and adsorption processes at the bottom affect water quality along the reservoir depth column. The temperature stratification and anoxic conditions at the reservoir bottom influence the concentration and mobility of some heavy metals (i.e., Fe and Mn) and, consequently, the quality of water that reaches the treatment and purification plant. This study is relevant for water resource management of the reservoir. Assessing the seasonal changes in water quality along the reservoir water column depth is fundamental to plan water treatment operations and optimize their costs. The reservoir assessment allows one to identify countermeasures to avoid or overcome the high concentrations of heavy metals and the stratification problem (i.e., artificial mixing of the water column, new water intakes at different depths operating at different times of the year, blowers, etc.)

    Lower Neutrino Mass Bound from SN1987A Data and Quantum Geometry

    Full text link
    A lower bound on the light neutrino mass mνm_\nu is derived in the framework of a geometrical interpretation of quantum mechanics. Using this model and the time of flight delay data for neutrinos coming from SN1987A, we find that the neutrino masses are bounded from below by mν104103m_\nu\gtrsim 10^{-4}-10^{-3}eV, in agreement with the upper bound mνm_\nu\lesssim (O(0.1)O(1))({\cal O}(0.1) - {\cal O} (1)) eV currently available. When the model is applied to photons with effective mass, we obtain a lower limit on the electron density in intergalactic space that is compatible with recent baryon density measurements.Comment: 22 pages, 3 figure

    Regional Nerve Block of the Temporomandibular Joint Capsule: A Technique for Clinical Research and Differential Diagnosis

    Full text link
    In previous studies in which regional anesthesia of the temporomandibular joint capsule was used to examine the role of the joint in mandibular movement and distinguish it from muscle control, the anesthetic techniques used have not been satisfactorily described. The accuracy of the injeetion technique described in this paper was determined by dissection and radiographic examination of fixed and fresh specimens. Using this technique, trial patient studies were made using an anesthetic solution to which a radiopaque medium was added. Radiographic examination of the patients affirmed the location of the injected material, while clinical assessment determined its functional effectiveness. Using the described technique, anesthetic solution was accurately and reproducibly introduced posteriorly and laterally to the temporomandibular joint to achieve anesthesia of the joint.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67376/2/10.1177_00220345800590110101.pd

    Generalizations of Kijowski's time-of-arrival distribution for interaction potentials

    Full text link
    Several proposals for a time-of-arrival distribution of ensembles of independent quantum particles subject to an external interaction potential are compared making use of the ``crossing state'' concept. It is shown that only one of them has the properties expected for a classical distribution in the classical limit. The comparison is illustrated numerically with a collision of a Gaussian wave packet with an opaque square barrier.Comment: 5 inlined figures: some typo correction

    General Solutions of Relativistic Wave Equations II: Arbitrary Spin Chains

    Full text link
    A construction of relativistic wave equations on the homogeneous spaces of the Poincar\'{e} group is given for arbitrary spin chains. Parametrizations of the field functions and harmonic analysis on the homogeneous spaces are studied. It is shown that a direct product of Minkowski spacetime and two-dimensional complex sphere is the most suitable homogeneous space for the physical applications. The Lagrangian formalism and field equations on the Poincar\'{e} and Lorentz groups are considered. A boundary value problem for the relativistically invariant system is defined. General solutions of this problem are expressed via an expansion in hyperspherical functions defined on the complex two-sphere.Comment: 56 pages, LaTeX2

    Free motion time-of-arrival operator and probability distribution

    Get PDF
    We reappraise and clarify the contradictory statements found in the literature concerning the time-of-arrival operator introduced by Aharonov and Bohm in Phys. Rev. {\bf 122}, 1649 (1961). We use Naimark's dilation theorem to reproduce the generalized decomposition of unity (or POVM) from any self-adjoint extension of the operator, emphasizing a natural one, which arises from the analogy with the momentum operator on the half-line. General time operators are set within a unifying perspective. It is shown that they are not in general related to the time of arrival, even though they may have the same form.Comment: 10 a4 pages, no figure

    Time-of-arrival distributions from position-momentum and energy-time joint measurements

    Get PDF
    The position-momentum quasi-distribution obtained from an Arthurs and Kelly joint measurement model is used to obtain indirectly an ``operational'' time-of-arrival (TOA) distribution following a quantization procedure proposed by Kocha\'nski and W\'odkiewicz [Phys. Rev. A 60, 2689 (1999)]. This TOA distribution is not time covariant. The procedure is generalized by using other phase-space quasi-distributions, and sufficient conditions are provided for time covariance that limit the possible phase-space quasi-distributions essentially to the Wigner function, which, however, provides a non-positive TOA quasi-distribution. These problems are remedied with a different quantization procedure which, on the other hand, does not guarantee normalization. Finally an Arthurs and Kelly measurement model for TOA and energy (valid also for arbitrary conjugate variables when one of the variables is bounded from below) is worked out. The marginal TOA distribution so obtained, a distorted version of Kijowski's distribution, is time covariant, positive, and normalized

    Time of arrival in the presence of interactions

    Get PDF
    We introduce a formalism for the calculation of the time of arrival t at a space point for particles traveling through interacting media. We develop a general formulation that employs quantum canonical transformations from the free to the interacting cases to construct t in the context of the Positive Operator Valued Measures. We then compute the probability distribution in the times of arrival at a point for particles that have undergone reflection, transmission or tunneling off finite potential barriers. For narrow Gaussian initial wave packets we obtain multimodal time distributions of the reflected packets and a combination of the Hartman effect with unexpected retardation in tunneling. We also employ explicitly our formalism to deal with arrivals in the interaction region for the step and linear potentials.Comment: 20 pages including 5 eps figure

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
    corecore