6,005 research outputs found

    A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation

    Get PDF
    A physical-space version of the stretched-vortex subgrid-stress model is presented and applied to large-eddy simulations of incompressible flows. This version estimates the subgrid-kinetic energy required for evaluation of the subgrid-stress tensor using local second-order structure-function information of the resolved velocity field at separations of order the local cell size. A relation between the structure function and the energy spectrum is derived using the kinematic assumptions of the stretched-vortex model for locally homogeneous anisotropic turbulence. Results of large-eddy simulations using this model are compared to experimental and direct numerical simulation data. Comparisons are shown for the decay of kinetic energy and energy spectra of decaying isotropic turbulence and for mean velocities, root-mean-square velocity fluctuations and turbulence-kinetic energy balances of channel flow at three different Reynolds numbers

    On the existence of quantum representations for two dichotomic measurements

    Full text link
    Under which conditions do outcome probabilities of measurements possess a quantum-mechanical model? This kind of problem is solved here for the case of two dichotomic von Neumann measurements which can be applied repeatedly to a quantum system with trivial dynamics. The solution uses methods from the theory of operator algebras and the theory of moment problems. The ensuing conditions reveal surprisingly simple relations between certain quantum-mechanical probabilities. It also shown that generally, none of these relations holds in general probabilistic models. This result might facilitate further experimental discrimination between quantum mechanics and other general probabilistic theories.Comment: 16+7 pages, presentation improved and minor errors correcte

    Nearest Neighbour Decoding and Pilot-Aided Channel Estimation in Stationary Gaussian Flat-Fading Channels

    Full text link
    We study the information rates of non-coherent, stationary, Gaussian, multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbour decoding and pilot-aided channel estimation. In particular, we analyse the behaviour of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity. We demonstrate that nearest neighbour decoding and pilot-aided channel estimation achieves the capacity pre-log - which is defined as the limiting ratio of the capacity to the logarithm of SNR as the SNR tends to infinity - of non-coherent multiple-input single-output (MISO) flat-fading channels, and it achieves the best so far known lower bound on the capacity pre-log of non-coherent MIMO flat-fading channels.Comment: 5 pages, 1 figure. To be presented at the IEEE International Symposium on Information Theory (ISIT), St. Petersburg, Russia, 2011. Replaced with version that will appear in the proceeding

    Numerical computation of rare events via large deviation theory

    Get PDF
    An overview of rare events algorithms based on large deviation theory (LDT) is presented. It covers a range of numerical schemes to compute the large deviation minimizer in various setups, and discusses best practices, common pitfalls, and implementation trade-offs. Generalizations, extensions, and improvements of the minimum action methods are proposed. These algorithms are tested on example problems which illustrate several common difficulties which arise e.g. when the forcing is degenerate or multiplicative, or the systems are infinite-dimensional. Generalizations to processes driven by non-Gaussian noises or random initial data and parameters are also discussed, along with the connection between the LDT-based approach reviewed here and other methods, such as stochastic field theory and optimal control. Finally, the integration of this approach in importance sampling methods using e.g. genealogical algorithms is explored

    Determination of the carrier envelope phase for short, circularly polarized laser pulses

    Full text link
    We analyze the impact of the carrier envelope phase on the differential cross sections of the Breit-Wheeler and the generalized Compton scattering in the interaction of a charged electron (positron) with an intensive ultra-short electromagnetic (laser) pulse. The differential cross sections as a function of the azimuthal angle of the outgoing electron have a clear bump structure, where the bump position coincides with the value of the carrier phase. This effect can be used for the carrier envelope phase determination.Comment: 7 pages, 4 figure

    Prediction of time to prosthesis implantation as a function of joint anatomy in patients with developmental dysplasia of the hip

    Get PDF
    BACKGROUND: Developmental dysplasia of the hip (DDH) can lead to pain and premature secondary osteoarthritis at an early stage. Joint-preserving osteotomy is an established solution to this problem. In contrast, a conservative approach would result in pain persistence, ultimately raising the patients question for a possible date of expected prosthesis implantation. The aim of the study was to identify the relationship between the dysplastic hip anatomy and the time of prosthesis implantation in order to enable prognostic predictions in younger patients with symptomatic DDH. MATERIALS AND METHODS: Data from 129 hips who received THA due to secondary DDH osteoarthritis were evaluated. The preoperative hip anatomy was evaluated for AI and LCE angle. Multiple linear regression analyses were then used to correlate the influence of these parameters with the patient's age at the time of surgery. In addition, a graphical relationship was derived by the method of power least squares curve fitting with second-degree polynomials. RESULTS: The mean age for THA was 54.3 ± 11 years. The time of surgery correlated significantly with LCE (0.37) and AI (- 0.3) (p < 0.001). The mean age of patients with LCE angle ≤ 10° was 41.9 ± 14.0 years, for LCE 11-20° 52.7 ± 9.5 years, and for LCE 21-30° 57.0 ± 10.3 years. The following formula could then be determined for the calculation of the potential patient age at the time of THA as a function of LCE angle: age pTHA = 40.2 + 0.8 × LCE angle - 0.01 × (LCE angle)2. CONCLUSION: A significant correlation between the extent of dysplasia and the time of prosthesis implantation was identified. In particular, the LCE and the AI correlated strongly with the time of implantation. The more dysplastic the angles were, the sooner the THA was necessary. Using the calculations presented in this study, the probable age of prosthesis implantation can be prognosticated and included in a counseling session about treatment options for DD

    Two techniques enable sampling of filtered and unfiltered molten metals

    Get PDF
    Filtered samples of molten metals are obtained by filtering through a plug of porous material fitted in the end of a sample tube, and unfiltered samples are obtained by using a capillary-tube extension rod with a perforated bucket. With these methods there are no sampling errors or loss of liquid

    General entanglement scaling laws from time evolution

    Full text link
    We establish a general scaling law for the entanglement of a large class of ground states and dynamically evolving states of quantum spin chains: we show that the geometric entropy of a distinguished block saturates, and hence follows an entanglement-boundary law. These results apply to any ground state of a gapped model resulting from dynamics generated by a local hamiltonian, as well as, dually, to states that are generated via a sudden quench of an interaction as recently studied in the case of dynamics of quantum phase transitions. We achieve these results by exploiting ideas from quantum information theory and making use of the powerful tools provided by Lieb-Robinson bounds. We also show that there exist noncritical fermionic systems and equivalent spin chains with rapidly decaying interactions whose geometric entropy scales logarithmically with block length. Implications for the classical simulatability are outlined.Comment: 4 pages, 1 figure (see also related work by S. Bravyi, M. Hastings, and F. Verstraete, quant-ph/0603121); replaced with final versio

    Squashing Models for Optical Measurements in Quantum Communication

    Full text link
    Measurements with photodetectors necessarily need to be described in the infinite dimensional Fock space of one or several modes. For some measurements a model has been postulated which describes the full mode measurement as a composition of a mapping (squashing) of the signal into a small dimensional Hilbert space followed by a specified target measurement. We present a formalism to investigate whether a given measurement pair of mode and target measurements can be connected by a squashing model. We show that the measurements used in the BB84 protocol do allow a squashing description, although the six-state protocol does not. As a result, security proofs for the BB84 protocol can be based on the assumption that the eavesdropper forwards at most one photon, while the same does not hold for the six-state protocol.Comment: 4 pages, 2 figures. Fixed a typographical error. Replaced the six-state protocol counter-example. Conclusions of the paper are unchange
    • …
    corecore