173 research outputs found

    Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III

    Get PDF
    A small proportion of 4H (Hypomyelination, Hypodontia and Hypogonadotropic Hypogonadism) or RNA polymerase III (POLR3)-related leukodystrophy cases are negative for mutations in the previously identified causative genes POLR3A and POLR3B. Here we report eight of these cases carrying recessive mutations in POLR1C, a gene encoding a shared POLR1 and POLR3 subunit, also mutated in some Treacher Collins syndrome (TCS) cases. Using shotgun proteomics and ChIP sequencing, we demonstrate that leukodystrophy-causative mutations, but not TCS mutations, in POLR1C impair assembly and nuclear import of POLR3, but not POLR1, leading to decreased binding to POLR3 target genes. This study is the first to show that distinct mutations in a gene coding for a shared subunit of two RNA polymerases lead to selective modification of the enzymes’ availability leading to two different clinical conditions and to shed some light on the pathophysiological mechanism of one of the most common hypomyelinating leukodystrophies, POLR3-related leukodystrophy

    Expanded phenotype of AARS1-related white matter disease.

    Get PDF
    Purpose Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. Methods A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. Results We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile–onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile–onset and late-onset phenotypes. Conclusion We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile–onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome

    Functional validation of novel compound heterozygous variants in B3GAT3 resulting in severe osteopenia and fractures: expanding the disease phenotype

    Get PDF
    Background A new disease class of syndromes, described as linkeropathies, which are derived from defects in the glycosaminoglycan-linker region as well as glycosaminoglycan-side chains of proteoglycans is increasingly being recognized as a cause of human disease. Proteoglycans are an essential component of the extracellular matrix. Defects in the enzymatic process of proteoglycan synthesis broadly occur due to the incorrect addition of side chains. Previously, homozygous missense variants within the B3GAT3 gene encoding beta 1,3 glucuronyltransferase 3(GlcAT-I) responsible for the biosynthesis of glycosaminoglycans have been described in 7 individuals. Case presentation In this study, a 4-year-old patient with a severe phenotype of osteoporosis, hypotonia, joint laxity, fractures, scoliosis, biscuspid aortic valve and myopia was referred for next generation sequencing after extensive negative clinical testing. Whole exome sequencing was performed on the proband and his unaffected parents to identify the molecular basis of his disease. Sequencing revealed compound heterozygous variants in B3GAT3: c.1A > G (p.Met1?) and c.671 T > A (p.L224Q). Clinical and in vitro functional studies were then completed to verify the pathogenicity of the genotype and further characterize the functional basis of the patient’s disease demonstrating the patient had a decrease both in the protein level of B3GAT3 and in the glucuronyltransferase activity when compared to control samples. Independent in vitro assessment of each variant confirmed the B3GAT3: c.1A > G (p.Met1?) variant is functionally null and the c.671 T > A (p.L224Q) missense variant has significantly reduced glucuronyltransferase activity (~3% of control). Conclusions This is the first report of a patient with compound heterozygosity for a null variant in trans with a missense in B3GAT3 resulting in a severe phenotype, expanding both the genotypic and phenotypic spectrum of B3GAT3-related disease

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals

    Get PDF
    Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. Methods: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. Results: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. Conclusion: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated

    Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans

    Get PDF
    The study of Drosophila neurodegenerative mutants combined with genetic and biochemical analyses lead to the identification of multiple complex mutations in 60 patients with a novel form of ataxia/leukoencephalopathy
    corecore