89 research outputs found

    Interplay between transglutaminases and heparan sulphate in progressive renal scarring

    Get PDF
    Transglutaminase-2 (TG2) is a new anti-fibrotic target for chronic kidney disease, for its role in altering the extracellular homeostatic balance leading to excessive build-up of matrix in kidney. However, there is no confirmation that TG2 is the only transglutaminase involved, neither there are strategies to control its action specifically over that of the conserved family-members. In this study, we have profiled transglutaminase isozymes in the rat subtotal nephrectomy (SNx) model of progressive renal scarring. All transglutaminases increased post-SNx peaking at loss of renal function but TG2 was the predominant enzyme. Upon SNx, extracellular TG2 deposited in the tubulointerstitium and peri-glomerulus via binding to heparan sulphate (HS) chains of proteoglycans and co-associated with syndecan-4. Extracellular TG2 was sufficient to activate transforming growth factor-β1 in tubular epithelial cells, and this process occurred in a HS-dependent way, in keeping with TG2-affinity for HS. Analysis of heparin binding of the main transglutaminases revealed that although the interaction between TG1 and HS is strong, the conformational heparin binding site of TG2 is not conserved, suggesting that TG2 has a unique interaction with HS within the family. Our data provides a rationale for a novel anti-fibrotic strategy specifically targeting the conformation-dependent TG2-epitope interacting with HS

    Tissue Transglutaminase Promotes Drug Resistance and Invasion by Inducing Mesenchymal Transition in Mammary Epithelial Cells

    Get PDF
    Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44+/CD24-/low cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease

    Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten

    Get PDF
    Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset

    Utjecaj uvjeta uzgoja i dodatka soli na sastav eteričnog ulja slatkog mažurana (Origanum majorana) iz Tunisa

    Get PDF
    O. majorana shoots were investigated for their essential oil (EO) composition. Two experiments were carried out; the first on hydroponic medium in a culture chamber and the second on inert sand in a greenhouse for 20 days. Plants were cultivated for 17 days in hydroponic medium supplemented with NaCl 100 mmol L1. The results showed that the O. majorana hydroponic medium offered higher essential oil yield than that from the greenhouse. The latter increased significantly in yield (by 50 %) under saline constraint while it did not change in the culture chamber. Under greenhouse conditions and in the absence of salt treatment, the major constituents were terpinene-4-ol and trans-sabinene hydrate. However, in the culture chamber, the major volatile components were cis-sabinene hydrate and terpinene-4-ol. In the presence of NaCl, new compounds appeared, such as eicosane, spathulenol, eugenol, and phenol. In addition, in the greenhouse, with or without salt, a very important change of trans-sabinene hydrate concentration in EO occurred, whereas in the culture chamber change appeared in cis-sabinene hydrate content.U radu je opisano ispitivanje sastava eteričnog ulja izdanaka biljke O. majorana. Provedena su dva eksperimenta: prvi na hidroponom mediju u komorama za uzgoj, a drugi na inertnom pijesku u stakleniku tijekom 20 dana. Biljke su uzgajane 17 dana u hidroponom mediju u koji je dodan NaCl 100 mmol L1. Rezultati ukazuju na to da hidroponi medij O. majorana osigurava veće prinose eteričnog ulja nego staklenik. U stakleniku se prinos ulja značajno povećao dodavanjem 50 % soli dok u uzgoju u uzgojnoj komori nije bilo promjene. U uvjetima u stakleniku i u odsutnosti soli, najvažniji sastojci ulja bili su terpinen-4-ol i trans-sabinen hidrat, dok su u uvjetima uzgojne komore najvažnije hlapljive komponente bile cis-sabinen hidrat i terpinen-4-ol. U prisutnosti NaCl-a, pojavili su se novi sastojci, kao što su eikozan, spatulenol, eugenol i fenol. Dodatno je uz stakleničke uvjete, sa i bez soli, došlo do važne promjene u količini trans-sabinen hidrata u eteričnom ulju, dok se u komorama promijenio sadržaj cis-sabinen hidrata

    Biomass Yield and Herb Essential Oil Characters at different Harvest Stages of Spring and Autumn Sown Coriandrum sativum

    No full text
    WOS: 000263017500006Coriander green herb is popular in Eastern Turkey. Fresh herbage yield, essential oil content and essential oil composition in the vegetative parts of small-fruit coriander (Coriandrum sativum L. var. microcarpum DC.) grown in two different seasons (spring after autumn sowing and summer after spring sowing) and harvested at different growth stages were examined. The experimental location was at Tokat, north Anatolia, Turkey. The oil composition was identified by GC-MS. Fresh herbage yield regularly increased from the rosette stage to full flowering in both growing seasons. in the summer season (spring sowing) dry matter yield was lower as a result of a shorter vegetative period compared to the spring season (autumn sowing). Essential oil content was low in early growing periods and increased regularly in subsequent periods. (E)-2-decenal and decanal of aliphatic aldehydes are main components of the herb oil. (E)-2-decenal had higher percentages at pre-flowering stage and full flowering stage compared to the early growing stages. Considering the growing season, plants growing in the summer season had striking differences for some components such as (E)-2-decenal and methyl eugenol. Because of low herbage yield and high (E)-decenal contents, a potential irritant, spring periods is more suitable for cultivating coriander as fresh or dried herbal usage at the experimental site

    Agronomic and technological properties of coriander (Coriandrum sativum L.) populations planted on different dates [Farkli zamanlarda ekilen kisnis (Coriandrum sativum L.) populasyonlarinin agronomik ve teknolojik ozellikleri]

    No full text
    This research was conducted to determine suitable sowing dates and the potential productivity of coriander (Coriandrum sativum L.), grown in the Mardin, Denizli and Erzurum districts, at Tokat ecological conditions in 1997 and 1998 vegetation periods. Three local populations from Mardin, Denizli and Erzurum were sown on four different dates (1 November, 1 March, 15 March and 1 April). The highest seed yield was obtained from the Erzurum population as 908 kg/ha. The greatest essential oil ratio was recorded from the Denizli population with 0.39%. Linalool which is main component of coriander essential oil varied from 50.52-92.52. Plant height (48.6-73.2 cm), number of branches per plant (4.5-6.2), number of umbeis per plant (4.7-7.8), biological yield (2.282-3.473 t/ha) and seed yield (0.678-0.911 t/ha) were decreased by later sowing dates. The effect of sowing dates was insignificant on 1000 seed weight (7.46-7.66 g), essential oil (0.28-0.33 %), protein ratio (14.1-14.8 %) and ash ratio (6.28-6.78 %)
    corecore