21 research outputs found

    The construction of an almond linkage map using morphological and microsatellite markers on 'Nonpariel' x 'Lauranne' population.

    No full text
    A set of 110 microsatellite primers has recently developed from almond, peach and apricot enriched genomic libraries was used to saturate a previously developed linkage map derived from “Lauranne X Nonpareil “ F1 progeny. Forty-six microsatellites showed polymorphic patterns, seven have been mapped and detected nine, ten and eight linkage groups for Nonpareil, Lauranne and the integrated map, respectively. Other polymorphic markers will be screened on entire population to achieve eight linkage groups. A number of morphological traits such as shell, testa and kernel characteristics and percentage of doubles were measured and analyzed. Most of these traits will be mapped as quantitative trait loci (QTL). Bacterial spot assay have been carried out and preliminary results show remarkable differences within the segregating population.Iraj Tavassolian, Margaret Sedgely ,Brent Kaiser, Michelle Wirthensohn, and Chris For

    Mapping SNP-anchored genes using high-resolution melting analysis in almond

    No full text
    Peach and almond have been considered as model species for the family Rosaceae and other woody plants. Consequently, mapping and characterisation of genes in these species has important implications. High-resolution melting (HRM) analysis is a recent development in the detection of SNPs and other markers, and proved to be an efficient and cost-effective approach. In this study, we aimed to map genes corresponding to known proteins in other species using the HRM approach. Prunus unigenes were searched and compared with known proteins in the public databases. We developed single-nucleotide polymorphism (SNP) markers, polymorphic in a mapping population produced from a cross between the cloned cultivars Nonpareil and Lauranne. A total of 12 SNP-anchored putative genes were genotyped in the population using HRM, and mapped to an existing linkage map. These genes were mapped on six linkage groups, and the predicted proteins were compared to putative orthologs in other species. Amongst those genes, four were abiotic stress-responsive genes, which can provide a starting point for construction of an abiotic resistance map. Two allergy and detoxification related genes, respectively, were also mapped and analysed. Most of the investigated genes had high similarities to sequences from closely related species such as apricot, apple and other eudicots, and these are putatively orthologous. In addition, it was shown that HRM can be an effective means of genotyping populations for the purpose of constructing a linkage map. Our work provides basic genomic information for the 12 genes, which can be used for further genetic and functional studies.Shu-Biao Wu, Iraj Tavassolian, Gholamreza Rabiei, Peter Hunt, Michelle Wirthensohn, John P. Gibson, Christopher M. Ford, Margaret Sedgle

    Evaluation of multiple approaches to identify genome-wide polymorphisms in closely related genotypes of sweet cherry ( Prunus avium L.)

    No full text
    Identification of genetic polymorphisms and subsequent development of molecular markers is important for marker assisted breeding of superior cultivars of economically important species. Sweet cherry (Prunus avium L.) is an economically important non-climacteric tree fruit crop in the Rosaceae family and has undergone a genetic bottleneck due to breeding, resulting in limited genetic diversity in the germplasm that is utilized for breeding new cultivars. Therefore, it is critical to recognize the best platforms for identifying genome-wide polymorphisms that can help identify, and consequently preserve, the diversity in a genetically constrained species. For the identification of polymorphisms in five closely related genotypes of sweet cherry, a gel-based approach (TRAP), reduced representation sequencing (TRAPseq), a 6k cherry SNParray, and whole genome sequencing (WGS) approaches were evaluated in the identification of genome-wide polymorphisms in sweet cherry cultivars. All platforms facilitated detection of polymorphisms among the genotypes with variable efficiency. In assessing multiple SNP detection platforms, this study has demonstrated that a combination of appropriate approaches is necessary for efficient polymorphism identification, especially between closely related cultivars of a species. The information generated in this study provides a valuable resource for future genetic and genomic studies in sweet cherry, and the insights gained from the evaluation of multiple approaches can be utilized for other closely related species with limited genetic diversity in the breeding germplasm. Keywords: Polymorphisms, Prunus avium, Next-generation sequencing, Target region amplification polymorphism (TRAP), Genetic diversity, SNParray, Reduced representation sequencing, Whole genome sequencing (WGS

    Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars.

    Get PDF
    Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs) provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L.) intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K) and 'Regina' × 'Lapins'(R×L), high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1) plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs) in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8). These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family
    corecore