31 research outputs found

    Real-Time, Real World Learning—Capitalising on Mobile Technology

    Get PDF
    This chapter explores the adoption of Web 2.0 technologies to promote active learning by students and to both mediate and enhance classroom instruction. Web 2.0 refers to open source, web-enabled applications (apps) that are driven by user-manipulated and user-generated content (Kassens-Noor, 2012). These apps are often rich in user participation, have dynamic content, and harness the collective intelligence of users (Chen, Hwang, & Wang, 2012). As such, these processes create “active, context based, personalised learning experiences” (Kaldoudi, Konstantinidis, & Bamidis, 2010, p. 130) that prioritise learning ahead of teaching. By putting the learner at the centre of the education process educators can provide environments that enhance employability prospects and spark a passion for learning that, hopefully, lasts a lifetime. As such, we critique an active learning approach that makes use of technology such as mobile applications (apps), Twitter, and augmented reality to enhance students’ real world learning. Dunlap and Lowenthal (2009) argue that social media can facilitate active learning as they recreate informal, free-flowing communications that allow students and academics to connect on a more emotional level. Furthermore, their use upskills students in the technical complexities of the digital world and also the specialised discourses that are associated with online participation, suitable for real world learning and working (Fig. 16.1). Three case studies explore the benefits of Web 2.0 processes. The first details the use of Twitter chats to connect students, academics, and industry professionals via online synchronous discussions that offer a number of benefits such as encouraging concise writing from students and maintaining on-going relationships between staff, students, and industry contacts. The second details a location-based mobile app that delivers content to students when they enter a defined geographical boundary linked to an area of a sports precinct. Finally, we explore the use of augmented reality apps to enhance teaching in Human Geography and Urban Studies

    A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Drosophila </it>Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding <it>roX </it>RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype.</p> <p>Results</p> <p>Here, we report a new strategy relying upon an unusual male-specific mosaic eye pigmentation phenotype produced when the MSL complex acts upon autosomal <it>roX1 </it>transgenes. Screening the second chromosome identified at least five loci, two of which are previously described components of the MSL complex. We focused our analysis on the modifier alleles of MSL1 and MLE (for 'maleless'). The MSL1 lesions are not simple nulls, but rather alter the PEHE domain that recruits the MSL3 chromodomain and MOF ('males absent on first') histone acetyltransferase subunits to the complex. These mutants are compromised in their ability to recruit MSL3 and MOF, dosage compensate the X, and support long distance spreading from <it>roX1 </it>transgenes. Yet, paradoxically, they were isolated because they somehow increase MSL complex activity immediately around <it>roX1 </it>transgenes in combination with wild-type MSL1 subunits.</p> <p>Conclusions</p> <p>We propose that these diverse phenotypes arise from perturbations in assembly of MSL subunits onto nascent <it>roX </it>transcripts. This strategy is a promising alternative route for identifying previously unknown components of the dosage compensation pathway and novel alleles of known MSL proteins.</p

    X chromosomal regulation in flies: when less is more

    Get PDF
    In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon

    Xist regulation and function eXplored

    Get PDF
    X chromosome inactivation (XCI) is a process in mammals that ensures equal transcript levels between males and females by genetic inactivation of one of the two X chromosomes in females. Central to XCI is the long non-coding RNA Xist, which is highly and specifically expressed from the inactive X chromosome. Xist covers the X chromosome in cis and triggers genetic silencing, but its working mechanism remains elusive. Here, we review current knowledge about Xist regulation, structure, function and conservation and speculate on possible mechanisms by which its action is restricted in cis. We also discuss dosage compensation mechanisms other than XCI and how knowledge from invertebrate species may help to provide a better understanding of the mechanisms of mammalian XCI
    corecore