15 research outputs found

    CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca(2+)- Permeable Channels and Stomatal Closure

    Get PDF
    Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca(2+) in guard cell ion channel regulation. However, genetic mutants in Ca(2+) sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+)-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+) activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+)-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+)-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+) oscillation experiments revealed that Ca(2+)-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+)-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+)-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling

    The characterization of plasma membrane-bound tubulin of cauliflower using Triton X-114 fractionation.

    No full text
    The cortical microtubules determine how cellulose microfibrils are deposited in the plant cell wall and are thus important for the control of cell expansion. To understand how microtubules can control microfibril deposition, the components that link the microtubules to the plasma membrane (PM) of plant cells must be isolated. To obtain information on the properties of the tubulin-membrane associations, cauliflower (Brassica oleracea) PM was subjected to Triton X-114 fractionation, and the distribution of alpha- and beta-tubulin was analyzed using immunoblotting. Approximately one-half of the PM-associated tubulin was solubilized by Triton X-114 and 10 to 15% of both alpha- and beta-tubulin was recovered in the detergent phase (indicative of hydrophobic properties) and 30 to 40% was recovered in the aqueous phase. The hydrophobic tubulin could be released from the membrane by high pH extraction with preserved hydrophobicity. A large part of the PM-associated tubulin was found in the Triton-insoluble fraction. When this insoluble material was extracted a second time, a substantial amount of hydrophobic tubulin was released if the salt concentration was increased, suggesting that the hydrophobic tubulin was linked to a high-salt-sensitive protein aggregate that probably includes other components of the cytoskeleton. The hydrophobicity of a fraction of PM-associated tubulin could reflect a direct or indirect interaction of this tubulin with the lipid bilayer or with an integral membrane protein and may represent the anchoring of the cortical microtubules to the PM, a key element in the regulation of cell expansion

    Second messengers in guard cells.

    No full text
    Experimental investigations of stomatal guard cells have provided valuable insights into the mechanisms which may underlie signalling in plants. To date a variety of second messengers/signalling elements have been implicated in the control of guard cell physiology and in the perception of important physiological stimuli which affect this cell type. The present paper examines such evidence, placing particular emphasis on the role of calcium-mobilizing second messengers. The possibility that several distinct signalling pathways may operate in the guard cell is discussed, as are the important implications that this may have for signalling in this and other plant cell systems

    The control of specificity in guard cell signal transduction.

    No full text
    Stomatal guard cells have proven to be an attractive system for dissecting the mechanisms of stimulus–response coupling in plants. In this review we focus on the intracellular signal transduction pathways by which extracellular signals bring about closure and opening of the stomatal pore. It is proposed that guard cell signal transduction pathways may be organized into functional arrays or signalling cassettes that contain elements common to a number of converging signalling pathways. The purpose of these signalling cassettes may be to funnel extracellular signals down onto the ion transporters that control the fluxes of ions that underlie stomatal movements. Evidence is emerging that specificity in guard cell signalling may be, in part, encoded in complex spatio–temporal patterns of increases in the concentration of cytosolic–free calcium ([Ca2+]cyt). It is suggested that oscillations in [Ca2+]cyt may generate calcium signatures that encode information concerning the stimulus type and strength. New evidence is presented that suggests that these calcium signatures may integrate information when many stimuli are present

    Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.

    No full text
    Stomata form pores on leaf surfaces that regulate the uptake of CO2 for photosynthesis and the loss of water vapour during transpiration1. An increase in the cytosolic concentration of free calcium ions ([Ca2+]cyt) is a common intermediate in many of the pathways leading to either opening or closure of the stomatal pore2, 3. This observation has prompted investigations into how specificity is controlled in calcium-based signalling systems in plants. One possible explanation is that each stimulus generates a unique increase in [Ca2+]cyt, or 'calcium signature', that dictates the outcome of the final response4. It has been suggested that the key to generating a calcium signature, and hence to understanding how specificity is controlled, is the ability to access differentially the cellular machinery controlling calcium influx and release from internal stores2, 3, 4, 5 . Here we report that sphingosine-1-phosphate is a new calcium-mobilizing molecule in plants. We show that after drought treatment sphingosine-1-phosphate levels increase, and we present evidence that this molecule is involved in the signal-transduction pathway linking the perception of abscisic acid to reductions in guard cell turgor

    Mechanisms Underlying Plant Tolerance to Abiotic Stresses

    No full text
    corecore