58 research outputs found
Surface Instabilities and Magnetic Soft Matter
We report on the formation of surface instabilities in a layer of
thermoreversible ferrogel when exposed to a vertical magnetic field. Both
static and time dependent magnetic fields are employed. Under variations of
temperature, the viscoelastic properties of our soft magnetic matter can be
tuned. Stress relaxation experiments unveil a stretched exponential scaling of
the shear modulus, with an exponent of beta=1/3. The resulting magnetic
threshold for the formation of Rosensweig-cusps is measured for different
temperatures, and compared with theoretical predictions by Bohlius et. al. in
J. Phys.: Condens. Matter., 2006, 18, 2671-2684.Comment: accepted to Soft Matte
The balancing act between high electronic and low ionic transport influenced by perovskite grain boundaries
\ua9 2024 The Royal Society of Chemistry.A better understanding of the materials\u27 fundamental physical processes is necessary to push hybrid perovskite photovoltaic devices towards their theoretical limits. The role of the perovskite grain boundaries is essential to optimise the system thoroughly. The influence of the perovskite grain size and crystal orientation on physical properties and their resulting photovoltaic performance is examined. We develop a novel, straightforward synthesis approach that yields crystals of a similar size but allows the tuning of their orientation to either the (200) or (002) facet alignment parallel to the substrate by manipulating dimethyl sulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) ratios. This decouples crystal orientation from grain size, allowing the study of charge carrier mobility, found to be improved with larger grain sizes, highlighting the importance of minimising crystal disorder to achieve efficient devices. However, devices incorporating crystals with the (200) facet exhibit an s-shape in the current density-voltage curve when standard scan rates are used, which typically signals an energetic interfacial barrier. Using the drift-diffusion simulations, we attribute this to slower-moving ions (mobility of 0.37
7 10-10 cm2 V-1 s-1) in combination with a lower density of mobile ions. This counterintuitive result highlights that reducing ion migration does not necessarily minimise hysteresis
Efficient Fréchet distance queries for segments
We study the problem of constructing a data structure that can store a two-dimensional polygonal curve P, such that for any query segment ab one can efficiently compute the FrĂ©chet distance between P and ab. First we present a data structure of size O(n log n) that can compute the FrĂ©chet distance between P and a horizontal query segment ab in O(log n) time, where n is the number of vertices of P. In comparison to prior work, this significantly reduces the required space. We extend the type of queries allowed, as we allow a query to be a horizontal segment ab together with two points s, t â P (not necessarily vertices), and ask for the FrĂ©chet distance between ab and the curve of P in between s and t. Using O(n log2 n) storage, such queries take O(log3 n) time, simplifying and significantly improving previous results. We then generalize our results to query segments of arbitrary orientation. We present an O(nk3+Ï” + n2) size data structure, where k â [1, n] is a parameter the user can choose, and Ï” > 0 is an arbitrarily small constant, such that given any segment ab and two points s, t â P we can compute the FrĂ©chet distance between ab and the curve of P in between s and t in O((n/k) log2 n + log4 n) time. This is the first result that allows efficient exact FrĂ©chet distance queries for arbitrarily oriented segments. We also present two applications of our data structure. First, we show that our data structure allows us to compute a local ÎŽ-simplification (with respect to the FrĂ©chet distance) of a polygonal curve in O(n5/2+Ï”) time, improving a previous O(n3) time algorithm. Second, we show that we can efficiently find a translation of an arbitrary query segment ab that minimizes the FrĂ©chet distance with respect to a subcurve of P
The Kondo Resonance in Electron Spectroscopy
The Kondo resonance is the spectral manifestation of the Kondo properties of
the impurity Anderson model, and also plays a central role in the dynamical
mean-field theory (DMFT) for correlated electron lattice systems. This article
presents an overview of electron spectroscopy studies of the resonance for the
4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including
beginning efforts at using angle resolved photoemission to determine the
k-dependence of the resonance. The overview includes the comparison and
analysis of spectroscopy data with theoretical spectra as calculated for the
impurity model and as obtained by DMFT, and the Kondo volume collapse
calculation of the cerium alpha-gamma phase transition boundary, with its
spectroscopic underpinnings.Comment: 32 pages, 11 figures, 151 references; paper for special issue of J.
Phys. Soc. Jpn. on "Kondo Effect--40 Years after the Discovery
First-principles quantum transport modeling of spin-transfer and spin-orbit torques in magnetic multilayers
We review a unified approach for computing: (i) spin-transfer torque in
magnetic trilayers like spin-valves and magnetic tunnel junction, where
injected charge current flows perpendicularly to interfaces; and (ii)
spin-orbit torque in magnetic bilayers of the type
ferromagnet/spin-orbit-coupled-material, where injected charge current flows
parallel to the interface. Our approach requires to construct the torque
operator for a given Hamiltonian of the device and the steady-state
nonequilibrium density matrix, where the latter is expressed in terms of the
nonequilibrium Green's functions and split into three contributions. Tracing
these contributions with the torque operator automatically yields field-like
and damping-like components of spin-transfer torque or spin-orbit torque
vector, which is particularly advantageous for spin-orbit torque where the
direction of these components depends on the unknown-in-advance orientation of
the current-driven nonequilibrium spin density in the presence of spin-orbit
coupling. We provide illustrative examples by computing spin-transfer torque in
a one-dimensional toy model of a magnetic tunnel junction and realistic
Co/Cu/Co spin-valve, both of which are described by first-principles
Hamiltonians obtained from noncollinear density functional theory calculations;
as well as spin-orbit torque in a ferromagnetic layer described by a
tight-binding Hamiltonian which includes spin-orbit proximity effect within
ferromagnetic monolayers assumed to be generated by the adjacent monolayer
transition metal dichalcogenide.Comment: 22 pages, 9 figures, PDFLaTeX; prepared for Springer Handbook of
Materials Modeling, Volume 2 Applications: Current and Emerging Material
Advanced capabilities for materials modelling with Quantum ESPRESSO
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software
- âŠ