88 research outputs found

    First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon

    Full text link
    We report the first measurement of coherent elastic neutrino-nucleus scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer \cevns over the background-only null hypothesis with greater than 3σ3\sigma significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 ±\pm 0.7) ×\times1039^{-39} cm2^2 -- consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the \cevns process and provides improved constraints on non-standard neutrino interactions.Comment: 8 pages, 5 figures with 2 pages, 6 figures supplementary material V3: fixes to figs 3,4 V4: fix typo in table 1, V5: replaced missing appendix, V6: fix Eq 1, new fig 3, V7 final version, updated with final revision

    Observation of Coherent Elastic Neutrino-Nucleus Scattering

    Full text link
    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset

    Monitoring the SNS basement neutron background with the MARS detector

    Full text link
    We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS' measured detection efficiency, the incoming BRN flux is estimated to be 1.20 ± 0.56 neutrons/m2/MWh1.20~\pm~0.56~\text{neutrons}/\text{m}^2/\text{MWh} for neutron energies above 3.5\sim3.5~MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors.Comment: Submitted to JINS
    corecore