938 research outputs found

    Mean field approach to breakdown phenomena in disordered systems

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutor: Antoni PlanesBreakdown phenomena can be understood as a phase transition that occur in athermal systems constituted of many interacting elements governed by the interplay between an external driving force and disorder. Representative examples are magnets driven by a magnetic field out of equilibrium and ruptures, in a stress driven fiber bundle. In this work we analyze critical behaviors of both cases within the mean field approach. The magnetic case has been compared with the Weiss model for a ferromagnet with no disorder at finite temperature. Finally, in the case of the fiber bundle model we show the existence of certain conditions for criticality to occu

    Development of a Reference Wafer for On-Wafer Testing of Extreme Impedance Devices

    Get PDF
    This paper describes the design, fabrication, and testing of an on-wafer substrate that has been developed specifically for measuring extreme impedance devices using an on-wafer probe station. Such devices include carbon nano-tubes (CNTs) and structures based on graphene which possess impedances in the κ Ω range and are generally realised on the nano-scale rather than the micro-scale that is used for conventional on-wafer measurement. These impedances are far removed from the conventional 50- reference impedance of the test equipment. The on-wafer substrate includes methods for transforming from the micro-scale towards the nano-scale and reference standards to enable calibrations for extreme impedance devices. The paper includes typical results obtained from the designed wafer

    A contextuality witness inspired by optimal state discrimination

    Full text link
    Many protocols and tasks in quantum information science rely inherently on the fundamental notion of contextuality to provide advantages over their classical counterparts, and contextuality represents one of the main differences between quantum and classical physics. In this work we present a witness for preparation contextuality inspired by optimal two-state discrimination. The main idea is based on finding the accessible averaged success and error probabilities in both classical and quantum models. We can then construct a noncontextuality inequality and associated witness which we find to be robust against depolarising noise and loss in the form of inconclusive events.Comment: 5 pages main text, 3 figures, 3 pages supplemental materia

    Storage and Retrieval of a Microwave Field in a Spin Ensemble

    Full text link
    We report the storage and retrieval of a small microwave field from a superconducting resonator into collective excitations of a spin ensemble. The spins are nitrogen-vacancy centers in a diamond crystal. The storage time of the order of 30 ns is limited by inhomogeneous broadening of the spin ensemble.Comment: 4 pages + supplementary material. Submitted to PR

    Contextual advantages and certification for maximum confidence discrimination

    Full text link
    One of the most fundamental results in quantum information theory is that no measurement can perfectly discriminate between non-orthogonal quantum states. In this work, we investigate quantum advantages for discrimination tasks over noncontextual theories by considering a maximum confidence measurement that unifies different strategies of quantum state discrimination, including minimum-error and unambiguous discrimination. We first show that maximum confidence discrimination, as well as unambiguous discrimination, contains contextual advantages. We then consider a semi-device independent scenario of certifying maximum confidence measurement. The scenario naturally contains undetected events, making it a natural setting to explore maximum confidence measurements. We show that the certified maximum confidence in quantum theory also contains contextual advantages. Our results establish how the advantages of quantum theory over a classical model may appear in a realistic scenario of a discrimination task

    The Ground State Energy of Heavy Atoms According to Brown and Ravenhall: Absence of Relativistic Effects in Leading Order

    Full text link
    It is shown that the ground state energy of heavy atoms is, to leading order, given by the non-relativistic Thomas-Fermi energy. The proof is based on the relativistic Hamiltonian of Brown and Ravenhall which is derived from quantum electrodynamics yielding energy levels correctly up to order α2\alpha^2Ry

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    Influence of pressure and radio frequency power on deposition rate and structural properties of hydrogenated amorphous silicon thin films prepared by plasma deposition

    Get PDF
    The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations

    Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond

    Full text link
    We analyze the impact of electric field and magnetic field fluctuations in the decoherence of the electronic spin associated with a single nitrogen-vacancy (NV) defect in diamond by engineering spin eigenstates protected either against magnetic noise or against electric noise. The competition between these noise sources is analyzed quantitatively by changing their relative strength through modifications of the environment. This study provides significant insights into the decoherence of the NV electronic spin, which is valuable for quantum metrology and sensing applications.Comment: 8 pages, 4 figures, including supplementary information
    • …
    corecore