6 research outputs found

    Analysis of the candidate 8p21 tumour suppressor, BNIP3L, in breast and ovarian cancer

    Get PDF
    Loss of heterozygosity (LOH) on the short arm of chromosome 8, at 8p 12-p23, is one of the most frequent genetic events in both breast and ovarian cancer, suggesting the location of a shared tumour suppressor gene. Microcell-mediated chromosome transfer of chromosome 8 suppresses tumorigenicity and growth of colorectal and prostate cancer cell lines, further supporting the presence of a tumour suppressor gene on 8p. We have taken a candidate gene approach to try to identify this tumour suppressor gene at 8p 12-p23. BNIP3L, which has sequence homology to pro-apoptotic proteins and the ability to suppress colony formation in soft agar, is located at 8p21, within a region of ovarian cancer LOH, breast cancer LOH and prostate cancer metastasis suppression. BNIP3L expression was assessed by both RT-PCR and Northern blot analysis in breast and ovarian cancer cell lines and found to be expressed at similar levels relative to expression in their respective normal epithelial cell lines. Genetic analysis of BNIP3L in 40 primary ovarian and 25 primary breast tumours identified one somatic, intronic mutation in one ovarian tumour, as well as several polymorphisms, including one resulting in an amino-acid substitution. These data suggest that BNIP3L is unlikely to be the target of 8p LOH in ovarian or breast cancer

    Age-dependency of the prognostic impact of tumor genomics in localized resectable MYCN non-amplified neuroblastomas Report from the SIOPEN Biology Group on the LNESG Trials

    Get PDF
    BACKGROUND: Biology based treatment reduction, i.e. surgery alone also in case of not totally resected tumors, was advised in neuroblastoma patients with localized resectable disease without MYCN amplification. However, whether the genomic background of these tumors may influence outcome was unknown and therefore scrutinized in a meta-analysis comprising two prospective therapy studies and a ‘validation’ cohort. PATIENTS AND METHODS: Diagnostic samples were derived from 406 INSS stages 1/2A/2B tumors from three cohorts: LNESGI/II and COG. Genomic data were analyzed in two age groups (cut-off: 18 months) and quality controlled by the SIOPEN Biology Group. RESULTS: In both patient age groups stage 2 tumors led to similarly reduced event-free survival (5y-EFS: 83+3% versus 80+4%), but overall survival was only decreased in patients >18m (5y-OS: 97+1% versus 87+4%; p=0.001). In the latter age subgroup, only tumors with SCA led to relapses, with 11q loss as the strongest marker (5y-EFS: 40+15% versus 89+5%; p18m but not <18m. CONCLUSION: The tumor genomic make-up of resectable non-MYCN amplified stage 2 neuroblastomas has a distinct age-dependent prognostic impact in neuroblastoma patients. While in the younger age group tumors with unfavourable (SCA) and favorable genetics showed relapses, both without worsening OS, in the older age group only tumors with unfavorable genetics led to relapses and decreased OS.N/

    Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer

    No full text
    Many molecular alterations are known to occur in urothelial carcinoma of the bladder, but their significance for tumor progression is poorly understood. Deletions of chromosome 8p are frequently found in several tumor types and are often associated with progressive disease. In all, 99 bladder tumors were screened for deletions at 8p using loss of heterozygosity (LOH) and multicolor fluorescence in situ hybridization FISH analyses. Allelic loss on chromosome 8p in at least one marker was found in 25/99 (25%) tumors. There was a significant correlation of 8p deletions with invasive tumor growth and a highly significant association with papillary growth pattern in patients with invasive disease. cDNA array analyses revealed that secreted Frizzled-related protein 1 (sFRP1), an antagonist of Frizzled receptors and Wnt pathway activation on chromosome 8p12-11.1, is frequently downregulated in bladder cancer. To investigate sFRP1 as a candidate for a putative progression-related gene on 8p, urothelial cell lines and primary urothelial carcinomas were screened for sFRP1 expression using quantitative real-time PCR, Northern blot, immunofluorescence and immunohistochemistry (IHC). Of the investigated bladder cancers, 38% showed loss of sFRP1 expression by quantitative RT-PCR. Evaluation of the protein expression by IHC using tissue microarrays containing 776 bladder cancers revealed loss or strong reduction of sFRP1 expression in 66% of cases. SFRP1 loss was associated with higher tumor stage and grade and shorter overall survival. In addition, loss of sFRP1 was an independent indicator of poor survival in patients with papillary but not with muscle invasive bladder cancer. There were neither mutations in the coding region of sFRP1 nor homozygous deletions at 8p12-11.21. However, promoter methylation was detected using methylation-specific PCR in 29% of cases. In conclusion, we could show a close correlation of chromosome 8p deletions and progression of papillary bladder tumors. The sFRP1 gene on chromosome 8p12-11.1 could be a candidate gene for the predicted, progression-related tumor suppressor gene in bladder cancer and could contribute to urothelial carcinogenesis
    corecore