2,897 research outputs found

    Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1

    Get PDF
    For the first time, a model that simulates methane emissions from northern peatlands is incorporated directly into a dynamic global vegetation model. The model, LPJ-WHyMe (LPJ <B>W</B>etland <B>Hy</B>drology and <B>Me</B>thane), was previously modified in order to simulate peatland hydrology, permafrost dynamics and peatland vegetation. LPJ-WHyMe simulates methane emissions using a mechanistic approach, although the use of some empirical relationships and parameters is unavoidable. The model simulates methane production, three pathways of methane transport (diffusion, plant-mediated transport and ebullition) and methane oxidation. A sensitivity test was conducted to identify the most important factors influencing methane emissions, followed by a parameter fitting exercise to find the best combination of parameter values for individual sites and over all sites. A comparison of model results to observations from seven sites resulted in normalised root mean square errors (NRMSE) of 0.40 to 1.15 when using the best site parameter combinations and 0.68 to 1.42 when using the best overall parameter combination

    Biosphere feedbacks and climate change

    Get PDF

    Climate change and challenges for conservation

    Get PDF

    Major features and forcing of high‐latitude northern hemisphere atmospheric circulation using a 110,000‐year‐long glaciochemical series

    Get PDF
    The Greenland Ice Sheet Project 2 glaciochemical series (sodium, potassium, ammonium, calcium, magnesium, sulfate, nitrate, and chloride) provides a unique view of the chemistry of the atmosphere and the history of atmospheric circulation over both the high latitudes and mid‐low latitudes of the northern hemisphere. Interpretation of this record reveals a diverse array of environmental signatures that include the documentation of anthropogenically derived pollutants, volcanic and biomass burning events, storminess over marine surfaces, continental aridity and biogenic source strength plus information related to the controls on both high‐ and low‐frequency climate events of the last 110,000 years. Climate forcings investigated include changes in insolation of the order of the major orbital cycles that control the long‐term behavior of atmospheric circulation patterns through changes in ice volume (sea level), events such as the Heinrich events (massive discharges of icebergs first identified in the marine record) that are found to operate on a 6100‐year cycle due largely to the lagged response of ice sheets to changes in insolation and consequent glacier dynamics, and rapid climate change events (massive reorganizations of atmospheric circulation) that are demonstrated to operate on 1450‐year cycles. Changes in insolation and associated positive feedbacks related to ice sheets may assist in explaining favorable time periods and controls on the amplitude of massive rapid climate change events. Explanation for the exact timing and global synchroneity of these events is, however, more complicated. Preliminary evidence points to possible solar variability‐climate associations for these events and perhaps others that are embedded in our ice‐core‐derived atmospheric circulation records

    On the available evidence for the temperature dependence of soil organic carbon

    Get PDF
    International audienceTwo recent papers by Knorr et al. (2005) and Fang et al. (2005) provide variations of model fitting conducted in the former study. Knorr et al. (2005) suggested that more recalcitrant fractions of soil organic carbon (SOC) could be more sensitive to temperature. Fang et al. (2005) argue that this is an implication of the choice of model used. Further, Reichstein et al. (2005) point out that the evidence for a stronger temperature sensitivity of recalcitrant soil carbon mainly rests on an analysis of data provided by Kätterer et al. (1998) and argue for a different selection criterion to exclude short-term incubations. Here, we explain why the model used by Knorr et al. (2005) is the simplest multi-pool model that can fit the available data and is at the same time fully consistent with the concept of "pools", as opposed to some of the model formulations proposed by Fang et al. (2005). It is also pointed out that the criterion proposed by Reichstein et al. (2005) uses posterior information to determine inclusion of experimental data, a practice that should be avoided. We conclude that the original analysis of Knorr et al. (2005) as well as the one added by Fang et al. (2005) indicate that there is a serious possibility that recalcitrant SOC reacts more to temperature changes than labile SOC
    corecore