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Abstract

We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon
allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris
columellaris in the semi-arid Great Western Woodlands, Western Australia, over
the past 100 years. Parameter values were derived from independent observations5

except for sapwood specific respiration rate, fine-root turnover time, fine-root specific
respiration rate and the ratio of fine-root mass to foliage area, which were estimated
by Bayesian optimization. The model reproduced the general pattern of interannual
variability in radial growth (tree-ring width), including the response to the shift in
precipitation regimes that occurred in the 1960s. Simulated and observed responses to10

climate were consistent. Both showed a significant positive response of tree-ring width
to total photosynthetically active radiation received and to the ratio of modeled actual to
equilibrium evapotranspiration, and a significant negative response to vapour pressure
deficit. However, the simulations showed an enhancement of radial growth in response
to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades15

that is not present in the observations. The discrepancy disappeared when the model
was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to
foliage area increases by 14 % (from 0.127 to 0.144 kgCm−2) as [CO2] increased while
the other three estimated parameters remained constant. The absence of a signal of
increasing [CO2] has been noted in many tree-ring records, despite the enhancement20

of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our
simulations suggest that this behaviour could be explained as a consequence of a shift
towards below-ground carbon allocation.

1 Introduction

The Great Western Woodlands (GWW) in southwestern Western Australia, with an25

area of about 160 000 km2, is the largest remaining area of intact Mediterranean
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woodland on Earth (Watson, 2008; Lee et al., 2013). The GWW region is unique
because of the diversity of large trees that grow there, despite the dry climate and
nutrient-poor sandy soils (Watson, 2008; Prober et al., 2012).

The southwest region of Western Australia has experienced a multidecadal drought
since the mid-1970s (Ansell et al., 2000; Cai and Cowan, 2006; Hope et al., 2006),5

characterized by a substantial reduction in winter rainfall. This change is consistent
with a poleward shift in the mid-latitude storm track (Smith et al., 2000; Frederiksen
and Frederiksen, 2007) and a reduction in the frequency of synoptic events and the
associated amount of winter precipitation, coupled with an increase in the intensity of
individual rainfall events (Hope et al., 2006). These changes are projected to continue10

under global warming (Yin, 2005; Hope, 2006). They have been variously linked to
changes in the Indian Ocean dipole (Smith et al., 2000; England et al., 2006), in
Antarctic climate (van Ommen and Morgan, 2010) and ultimately to changes in the
Southern Annular Mode (Cai and Cowan, 2006; Hendon et al., 2007; Meneghini et al.,
2007; Feng et al., 2010).15

These regional changes in climate are also reflected in the GWW. At the GWW
Supersite at Credo (30.1◦ S, 120.7◦ E), mean annual temperature has increased
significantly in the last 100 years (0.139±0.015 ◦C decade−1, p < 0.001). There has
been no trend in annual precipitation, but the number of rain days has decreased
significantly since the middle of last century, especially after 1960 (−6.16 daydecade−1,20

p < 0.001); and the mean precipitation on rain days (i.e. precipitation intensity)
has increased (0.38 mmdecade−1, p < 0.001). The interannual variability of annual
precipitation has also increased (72.8 and 81.7 mm for the standard deviation (SD) of
annual precipitation before and after 1960 respectively). These changes were expected
to have had a significant impact on tree growth in the GWW.25

It remains unclear whether the changes in climate in southwestern Western Australia
are anthropogenic (Pitman et al., 2004; Cai and Cowan, 2006). However, the observed
increase in [CO2] has direct impacts on photosynthesis and the water-use efficiency
of trees (Drake et al., 1997). Model studies have suggested that the impact of [CO2]

4771

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4769–4800, 2015

A model analysis of
climate and CO2

controls on tree
growth in a semi-arid

woodland

G. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

on the radial stem growth is limited (Boucher et al., 2014; Li et al., 2014) and this
is supported by tree-ring studies (Kienast and Luxmoore, 1988; Gedalof and Berg,
2010; van der Sleen et al., 2015). However, the previous modelling studies were
conducted in regions where tree growth is limited by temperature, rather than moisture
availability and its seasonal distribution. A stronger response to enhanced [CO2] might5

be expected a priori in water-limited regions (Field et al., 1983; Hyvönen et al., 2007),
such as the GWW, because of the known increase in water-use efficiency caused by
rising [CO2].

In this study, we demonstrate that the radial growth of the gymnosperm Callitris
columellaris in the GWW can be simulated using a light-use efficiency model of10

photosynthesis coupled with a dynamic allocation and tree-growth model. We then
use this model to explore the impact of changes in climate and [CO2] on tree growth
under water-limited conditions.

2 Methods

2.1 The study area15

The vegetation of the GWW is dominated by open eucalypt woodlands, with patches
of heathland, mallee and grassland. The climate is characterized by winter rainfall and
summer drought, although storms associated with the monsoonal penetration into the
continental interior can also bring occasional rains in summer (Sturman et al., 1996).
The sampling site (GWW Super Site, Credo, 30.1◦ S, 120.7◦ E, 400 ma.s.l.) lies in the20

northernmost and driest part of the GWW (Fig. 1). This area is dominated by naturally
regenerating eucalypts (Eucalyptus salmonophloia and E. salubris), associated with
Acacia and the multi-stemmed gymnosperm Callitris columellaris, with Atriplex in the
understorey. Human impact on the landscape is minimal.

4772

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4769–4800, 2015

A model analysis of
climate and CO2

controls on tree
growth in a semi-arid

woodland

G. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.2 Tree ring data

The genus Callitris has been shown to provide a good record of annual tree growth in
a wide variety of climates across Australia (Ash, 1983; Cullen and Grierson, 2007,
2009; Baker et al., 2008; Cullen et al., 2008). Tree-ring cores were obtained from
ten Callitris trees in August 2013. The selected trees were canopy trees and not5

overshadowed by other individuals. Other environmental conditions (e.g. soil depth)
showed no obvious variation between the sampled trees. Multiple cores were obtained
from each tree, taking care to sample each of the individual stems of each tree. A total
of 32 tree ring cores were obtained. Measurements of annual growth were made on
each core. Visual cross-dating and measuring accuracy was checked with the cross-10

dating software COFECHA (Holmes, 1983).
The measurements of tree growth on individual stems were aggregated to produce

an estimate of the total radial growth of each tree for comparison with model
outputs. The “effective” single-stemmed basal diameter (D) and “effective” single-
stemmed diameter increment (dD/dt) were obtained from observed multi-stemmed15

basal diameter (δi ) and individual-stem diameter increments (d(δi )/dt) by:

D =

√√√√ n∑
i=1

δ2
i , and dD/dt =

1
D

n∑
i=1

(δi ×dδi/dt) (1)

The effective annual growth measured at the study site is shown in Fig. 2. Tree-
ring series from the Southern Hemisphere are conventionally presented with annual
increments attributed to the calendar year in which tree growth was initiated (Schulman,20

1956). Although the longest tree-ring record obtained dates from 1870 (Fig. 2), only
three trees have pre-1920 records. We therefore focus on the interval from 1920 to
2013.

4773

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4769–4800, 2015

A model analysis of
climate and CO2

controls on tree
growth in a semi-arid

woodland

G. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.3 The tree growth model

We used a light-use efficiency model (the P model: Wang et al., 2014) to simulate
gross primary production (GPP), which is then used as input to a species-based carbon
allocation and functional geometric tree-growth model (the T model: Li et al., 2014) to
simulate tree growth. The P model simulates GPP per unit of absorbed PAR using5

data on latitude, elevation, [CO2] and monthly temperature, precipitation, and fractional
cloud cover (Wang et al., 2014).

The potential GPP per unit of absorbed PAR as predicted by the P model depends
on the PAR incident on the vegetation canopy during the growing season (temperature
above 0 ◦C), the intrinsic quantum efficiency of photosynthesis, and the effects10

of photorespiration and substrate limitation at subsaturating [CO2] represented as
a function of the leaf-internal [CO2] and the photorespiratory compensation point. Leaf-
internal [CO2] is estimated from ambient [CO2] via the least-cost hypothesis (Wright
et al., 2003; Prentice et al., 2014) as a function of atmospheric aridity (expressed
as ∆E , the climatic moisture deficit: difference between annual (estimated) actual15

evapotranspiration (Ea) and equilibrium evapotranspiration (Eq)), air temperature and

elevation. In the version used here, GPP is further modified by a factor α1/4 (α is
the ratio of actual to potential evapotranspiration) to account for the reduction in GPP
at very low soil moisture content, which has been observed in flux measurements
in arid regions. The fraction of incident PAR absorbed by the canopy (fAPAR) is20

estimated from the leaf area index within the canopy and used to convert potential
to actual GPP with the help of Beer’s law (Jarvis and Leverenz, 1983). Annual
net primary production (NPP) is derived from annual GPP, corrected for foliage
respiration, by deducting growth respiration (assumed to be proportional to NPP) and
the maintenance respiration of sapwood and fine roots. NPP is allocated to stem,25

foliage and fine-root increments, foliage turnover and fine-root turnover. Carbon is
allocated to different tissues within the constraint of the basic functional or geometric
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relationships between different dimensions of the tree, including asymptotic height-
diameter trajectories (Thomas, 1996; Ishii et al., 2000; Falster and Westoby, 2005).

A full description of the coupled model is given in Li et al. (2014). The model has
previously been used to simulate the growth of Pinus koraiensis in a temperate and
relatively moist site in the Changbai Mountains, China. Tree growth in the Changbai5

Mountains is primarily constrained by PAR, which in turn is strongly influenced by cloud
cover. When driven by local climate data and changing atmospheric [CO2], the model
produced a good representation of interannual variability in Pinus koraiensis growth
over the past 50 years.

2.4 Derivation of model parameter values10

The P model is generic for all C3 plants and has no free parameters. The T model
requires 15 parameters to be specified. Most of these could be obtained from
measurements made at the sampling site, or from the literature (Table 1). Stem basal
diameter, tree height and crown area were measured on 150 trees at the sampling site.
Parameter values for the initial slope of the height–diameter relationship (a: 41.35),15

the initial ratio of crown area to stem cross-sectional area (c: 626.92), and maximum
tree height (Hm: 9.58 m) were estimated using non-linear regression applied to the
effective basal diameter (D), tree height (H), and crown area (Ac) measurements on
these trees. Values for sapwood density (ρs) and specific leaf area (σ) were derived
from five measurements made at the sampling site (Table 1).20

We used generic values for the quantum efficiency of photosynthesis (ε), PAR
extinction coefficient (k) and yield factor (y), from the literature (Table 1). We used
estimates of leaf area index within the crown (L) and foliage turnover time (τf) measured
on Callitris species in other regions of Australia. Previous analyses show that the T
model is relatively insensitive to these five parameters (Li et al., 2014).25

There are no estimates of fine-root turnover time (τr), fine-root specific respiration
rate (rr), sapwood-specific respiration rate (rs), and ratio of fine-root mass to foliage
area (ζ ) for Callitris in the literature and these parameters were not measured in the
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field. However, these parameters have been shown to have a substantial impact on
simulated radial growth and the shape of the ontogenetic ageing curve (Li et al., 2014).
We used neural-network Bayesian parameter optimization (Jaakkola and Jordan,
2000; Pelikan, 2005), constrained by mean ring width during the period 1950–2012,
to derive mutually consistent values of these four parameters. The final optimized5

parameter values lie within the range of measurements that have been made on other
gymnosperms (Table 1).

2.5 Climate inputs

The P model requires daily temperature, precipitation, and fractional cloud cover as
an input, which are generally obtained from linear interpolation of monthly values of10

these variables (Wang et al., 2014). Although three meteorological stations (Credo,
Kalgoorlie, Ora Banda, Menzies; Fig. 1) are near to the GWW site, none has records
for all three variables covering the whole interval sampled by the tree-ring series
(i.e. 1920–2013). We therefore used monthly temperature, precipitation, and cloud
cover fraction for the interval 1920 onwards from the CRU TS v3.22 data set (Harris15

et al., 2014). We used values for the single grid cell (30.25◦ S, 120.75◦ E) in which the
GWW site lies (Fig. 3). We examined the reliability of this approach by comparing the
gridded climate values with observed values from the four meteorological stations for
all overlapping intervals for each variable; in the case of solar radiation/cloud cover
this was very short (post-1990 only). There is generally good agreement between the20

gridded monthly (and annual) temperature and precipitation data and meteorological
station data with respect to long-term means, interannual variability and trends. The
correlation between the gridded and observed values of interannual variability in
temperature at Kalgoorlie post 1911 is 0.907 (p < 0.001). Similarly, the correlation
between the gridded and observed values of interannual variability in precipitation at25

Menzies between 1901 and 2008 is 0.905 (p < 0.001).
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2.6 Definition of the effective growing season

The GWW is characterized by strong precipitation seasonality, while temperature
variations are relatively modest. In climates with cold winters there is always a distinct
growing season even for evergreen trees. Carbon that is assimilated after maximum
leaf-out in any year is normally stored and contributes to tree growth in the subsequent5

growing season (Michelot et al., 2012). Thus the effective growing season for tree
growth in seasonally cold climates can be defined as from mid-summer in one year until
mid-summer in the subsequent year (Li et al., 2014). It is less obvious how to define
the effective growing season in moisture-limited regions. However, several studies have
indicated that radial growth in Callitris is affected not only by precipitation during the10

current growing year but also by precipitation during the wet season in previous years
(Baker et al., 2008; Cullen and Grierson, 2009), suggesting that it is necessary to
consider an effective growing season for carbon accumulation that is longer than the
current year.

We investigated the optimal interval influencing carbon accumulation and tree growth15

using generalized linear modeling (GLM: Nelder and Baker, 1972). We used total
annual photosynthetically active radiation (PAR0), mean annual temperature (MAT),
and the ratio of actual to potential evapotranspiration (α) as independent variables in
the GLM and mean tree-ring width during the period from 1950–2013 as the dependent
variable. The post-1950 interval was used for this analysis in order to use all ten tree-20

ring records to derive the target mean tree-ring width. We defined the effective growing
season as the period from January to December in the current growth year, and then
extended the interval by six-month steps for a period up to three years. In these latter
analyses, each six-month period contributes equally to the carbon available for growth.
The goodness-of-fit of each model was judged based on the significance of the slope25

coefficient of each independent variable (p value) and the R2 of the overall model.
These analyses (Table 2) show that the best overall prediction of tree-ring width (R2 =

0.308) was obtained using an effective growing season of two years (from January in
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the previous year to December in the year of the tree-ring formation). This interval
also produced significant p values for each of the predictor variables (Table 2). The
overall relationship, and the significance of each climate variable, deteriorated when
the effective growing season was defined as any longer than two years. Thus, in the
subsequent application of the model, we used a carbon-accumulation period of two5

years to simulate growth rates. This is consistent with the general observation that
radial growth of Callitris is also influenced by precipitation in the previous rainy season
(Baker et al., 2008; Cullen and Grierson, 2009).

2.7 Application of the model

Each tree was initialized with its actual effective single-stemmed basal diameter in the10

first year of growth, except that trees that started growing before 1901 were initialised
using the actual effective single-stemmed basal diameter in 1901. The availability of
climate data determined the earliest start date of the simulations (1901). The initial
basal diameter was calculated from the measured diameter in August 2013 (which
varied between 11.9 and 28.2 cm) and measured radial growth between the starting15

date and sampling date.
The model was initially run with a fixed [CO2] of 360 ppm. To examine the

impact of changing [CO2] on tree growth, we made a second simulation using the
observed annual [CO2] between 1901 and 2013 (296–389 ppm: Fig. 3). The CO2
observations are based on merging ice-core records for the interval from 1901 to20

1957 (Etheridge et al., 1996; MacFarling Meure et al., 2006) and the yearly average
of direct atmospheric measurements from Mauna Loa and the South Pole stations
from 1958 to 2013 (http://scrippsco2.ucsd.edu/data/merged_ice_core/merged_ice_
core_yearly.csv).
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3 Results

3.1 Simulated ring width vs. observations

The T model captured the amplitude and interannual variability of Callitris tree growth
in the GWW realistically (Fig. 4). The mean simulated ring width for the period 1950–
2012 was 0.722 mm, compared to an observed value of 0.718 mm. There was a highly5

significant positive correlation (r = 0.37, p < 0.01) between the simulated and observed
mean tree-ring time series. The model underestimated the SD (SD) of the mean ring
width series (0.122 mm) compared to the observed SD (0.190 mm). This difference
probably reflects the impact of local variability in environmental conditions on individual
tree growth, which is not accounted for in our modelling approach.10

GLM analysis (Fig. 5a, Table 3) showed that observed tree growth has a strongly
positive, independent response to both PAR0 and soil moisture stress (as measured
by α) and a negative response to MAT. These relationships can also be shown
in the simulations. Although there is more scatter in the observations, the slopes
of the observed and simulated response to PAR0 and α are similar in the model15

and the observations. The strength of the observed response to MAT is stronger
(−0.177 mm ◦C−1) than in the model (−0.079 mm ◦C−1).

The positive relationship with PAR0 reflects the universal control of photosynthesis
by light availability, and the positive relationship with α is consistent with observations
that the growth of Callitris is determined by precipitation variability (Ash, 1983; Cullen20

and Grierson, 2009). Since the negative relationship between tree growth and MAT
is independent of the impact of increasing temperature on soil moisture availability
(α), we hypothesized that this reflects the influence of temperature on atmospheric
moisture conditions and specifically vapour pressure deficit (VPD: the difference
between saturated and actual vapour pressure). VPD affects stomatal conductance25

such that increasing VPD leads to stomatal closure, with a correspondingly negative
impact on photosynthesis and hence carbon assimilation. To test this hypothesis, we re-
ran the GLM analysis including VPD as a fourth independent variable (Fig. 5b, Table 3).
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In this analysis, tree growth still had a significant positive response to PAR0 and α, and
showed a significant negative response to VPD (−0.217±0.125 mm hPa−1) but no
longer showed any significant relationship with MAT (p = 0.704). This finding indicates
that the apparent relationship with MAT reflects the correlation between temperature
and increasing VPD, rather than an independent effect of temperature stress.5

3.2 Simulations with varying [CO2]

Comparison of the fixed and varying [CO2] simulations (Fig. 6) shows a positive
response of tree ring width to [CO2]: simulated ring widths were smaller in the varying
[CO2] simulation then in the fixed [CO2] simulation prior to ca 1990 (i.e. when the
actual [CO2] was less than 360 ppm) and larger thereafter. The average difference in10

simulated ring width in the last decade of the simulation is 0.228 mm. But the positive
impact of enhanced [CO2] is not apparent in the observations. GLM analysis (Fig. 7,
Table 3) shows that there is no relationship between [CO2] and observed tree ring
width (slope = −0.001±0.001 mmppm−1, p = 0.687). As a result, the simulations using
realistic time-varying [CO2] did not satisfactorily reproduce the observed pattern of15

variability in ring widths.
While enhanced [CO2] is expected to have a positive effect on tree growth (Huang

et al., 2007; Hyvönen et al., 2007; Donohue et al., 2013) the absence of a response in
tree radial growth to elevated [CO2] has been noted previously (Kienast and Luxmoore,
1988; Gedalof and Berg, 2010). Possible explanations for this are that either the20

additional carbon is consumed through enhanced respiration or allocated to other
parts of the tree – effects that are not taken into account when fixed parameter values
are used for respiration and allocation between different pools. As a test of whether
parameter values might plausibly have changed in response to varying [CO2], we re-
ran the Bayesian parameter optimization of fine-root turnover time (τr), fine-root specific25

respiration rate (rr), sapwood specific respiration rate (rs) and ratio of fine-root mass
to foliage area (ζ ) for 30 year moving windows since 1920 using appropriate [CO2] for
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each window. This resulted in no change in the estimated values for fine-root turnover
time, fine-root specific respiration rate, and sapwood-specific respiration rate (Fig. 8).
However, the estimated value of the ratio of fine-root mass to foliage area (ζ ) increased
by about 14 % from 1950 to the end of the period. A simulation with observed [CO2]
and time-varying values of ζ produced a better agreement (r = 0.27) with the tree-ring5

observations (Fig. 9). In particular, this simulation does not produce an overestimation
of ring widths in recent years compared to observations.

4 Discussion and conclusions

We have shown that the radial growth (ring width) of the gymnosperm Callitris
columellaris over the last century in the seasonally dry environment of the GWW can10

be realistically simulated by coupling a generic model of GPP with a model of carbon
allocation and functional geometric tree growth using species-specific parameter
values. Model performance was not adversely affected by the reduction in winter
precipitation and the shift towards more variable precipitation that occurred in the mid-
1970s, indicating that it successfully captured the climate controls on tree growth during15

the whole period considered. This conclusion was borne out by GLM analyses, which
show that the simulated and observed responses to key climate variables were similar.

The radial growth of Callitris columellaris in the GWW is positively correlated with
PAR0 and α, and negatively correlated with MAT. However, we have shown that the
relationship with MAT can be explained by the positive correlation between MAT and20

VPD. When VPD was included in the analyses, we found a strong negative relationship
between radial growth and VPD and no additional effect of MAT. The response to
VPD can be explained as a consequence of the atmospheric control on stomatal
conductance and hence photosynthesis. Thus, both atmospheric and soil moisture
deficits (the former represented by VPD, the latter by α) apparently exert independent25

controls on radial stem growth. In analyses of the climate controls on radial growth of
Pinus koraiensis in the Changbai Mountains (Li et al., 2014), we attributed the negative
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correlation with MAT as reflecting the fact that the site was at the southern limit of the
distribution of Pinus koraiensis in China. However, it could be that this relationship was
also driven by VPD.

We have shown that the radial growth of Callitris columellaris in the GWW has not
responded to increasing [CO2] in recent decades. The lack of a response to [CO2]5

has been a feature of several other tree-ring studies (Kienast and Luxmoore, 1988;
Archer et al., 1995; Gedalof and Berg, 2010; van der Sleen et al., 2015). Our model
experiments suggest that the lack of response in radial growth could be because
of changes in allocation to different components of the tree, specifically increased
allocation to fine roots. This is consistent with analyses of stable carbon isotopes and10

growth rings of tropical trees (van der Sleen et al., 2015), which found an increase in
water-use efficiency but no stimulation of radial growth from CO2 fertilisation during the
recent 150 years.

Results from free-air carbon enrichment (FACE) experiments are equivocal about
the impact of enhanced [CO2] on tree growth and the allocation to fine roots. However,15

the majority of sites (Oak Ridge FACE: Norby et al., 2004; DUKE-FACE: DeLucia et al.,
1999; Pritchard et al., 2008; Rhinelander ASPEN-FACE: King et al., 2001; EUROFACE:
Calfapietra et al., 2003; Lukac et al., 2003; Bangor FACE: Smith et al., 2013) have
shown increased allocation to fine roots as a consequence of enhanced [CO2]. The
Swiss Canopy Crane site is the outlier, with decreased below-ground allocation (Bader20

et al., 2009). We might expect a priori that trees at sites experiencing strong nutrient
limitation would show this kind of response, whereas trees at sites experiencing
strong water limitation might show the opposite response due to enhanced water use
efficiency at high [CO2]. Our results do not support this reasoning, suggesting instead
that the trees are allocating more below ground as [CO2] increases even in the strongly25

water limited environment of the GWW. It is also possible that the shift in precipitation
regime has contributed to a shift towards carbon allocation below ground.

Appropriately analyzed, tree-ring records worldwide should yield consistent
information about the diverse responses of tree growth and allocation to environmental
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change. A noteworthy feature of our study is that a relatively slight change in the
allocation of carbon to fine roots vs. leaves provides a quantitatively consistent
explanation of the apparent absence of a growth response to [CO2]. If this explanation
is correct, it does not support the interpretation that tree NPP is not responsive to
[CO2] (whether through nutrient limitation, sink limitation or any other reason). It does5

however support the idea that above-ground NPP and radial growth are sensitive to
environmental effects on the allocation of assimilates to different plant compartments.
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Table 1. Definition of T model parameters and derivation of parameter values. Two values are
given for the ratio of fine-root mass to foliage area; the value in brackets is from the Bayesian
parameter optimization using variable CO2.

Parameter Symbol Value Uncertainty or
range of value
from literature

Value source Reference

initial slope of height–
diameter relationship (–)

a 41.35 41.35±2.58 observation –

initial ratio of crown area to
stem cross-sectional area (–)

c 626.92 626.92±20.03 observation –

maximum tree height (m) Hm 9.58 9.58±1.11 observation –

sapwood density (kgCm−3) ρs 406 406±32 observation –

specific leaf area (m2 kg−1 C) σ 5.16 5.16±0.32 observation –

leaf area index within the
crown (–)

L 1.87 1.87±0.18 species-based
parameter
value from the literature

Fieber et al. (2014)

foliage turnover time (years) τf 2.58 – species-based
parameter
value from the literature

Wright and Westoby (2002)

intrinsic quantum efficiency
(molC(molphoton)−1)

ε 0.085 – generic value Collatz et al. (1998)
Wang et al. (2014)

PAR extinction coefficient (–) k 0.5 0.48–0.58 generic value Pierce and Running (1988)

yield factor (–) y 0.6 0.5–0.7 generic value Zhang et al. (2009)

fine-root turnover time (years) τr 0.82 0.76±0.06 Bayesian parameter opti-
mization

Yuan and Chen (2010)
(estimation for
evergreen
needleleaf trees)

fine-root specific respiration
rate (yr−1)

rr 1.41 1.36 Bayesian parameter opti-
mization

Burton and Prigitzer (2002)
(estimation from one-seeded
Juniper)

sapwood specific respiration
rate (yr−1)

rs 0.035
(1.03 nmolmol−1 s−1)

0.5–10,
20 nmolmol−1 s−1

Bayesian parameter opti-
mization

Landsberg and Sands (2010)

ratio of fine-root mass to
foliage area (kgCm−2)

ζ 0.132 (0.129) 1.0;
0.17

Bayesian parameter opti-
mization

Burrows et al. (2001)
(estimation for Callitris)
White et al. (2000) (estimation
for evergreen needleleaf tree)
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Table 2. GLM analysis of relationship between ring width and climate parameters using
different definitions of the effective growing season, based on the interval from 1950 to present.
The dependent variable is mean ring width. The independent variables are the total annual
photosynthetically active radiation (PAR), mean annual temperature (MAT), and the ratio of
actual to potential evapotranspiration (α). The coefficients give the change in ring width (mm)
per unit change in the climate parameter.

PAR0 MAT α R2

(mm(kmolphotonm−2)−1) (mm ◦C−1) (mm)

Formation year Estimation 0.347 −0.052 0.746 0.076
Error ±0.186 ±0.054 ±0.558
p value 0.068 0.340 0.187

Calendar year Estimation 0.335 −0.093 0.930 0.141
Error ±0.185 ±0.051 ±0.436
p value 0.076 0.074 0.038

1.5 Calendar year Estimation 0.557 −0.148 1.640 0.270
Error ±0.207 ±0.057 ±0.510
p value 0.010 0.013 0.002

2 Calendar year Estimation 0.527 −0.177 2.003 0.308
Error ±0.229 ±0.065 ±0.539
p value 0.025 0.008 0.000

2.5 Calendar year Estimation 0.530 −0.158 2.092 0.236
Error ±0.262 ±0.074 ±0.634
p value 0.048 0.037 0.002

3 Calendar year Estimation 0.774 −0.192 2.434 0.252
Error ±0.282 ±0.081 ±0.685
p value 0.008 0.022 0.001

4790

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4769–4800, 2015

A model analysis of
climate and CO2

controls on tree
growth in a semi-arid

woodland

G. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. GLM analyses of simulated and observed response of tree growth to climate variables
and CO2. The dependent variable is mean ring width series (dates from 1950 and to 2012).
The independent variables are annual photosynthetically active radiation (PAR), mean annual
temperature (MAT), the ratio of actual to potential evapotranspiration (α), vapour pressure
deficit (VPD) and monthly [CO2].

PAR MAT α VPD CO2

(mm(kmolphotonm−2)−1) (mm ◦C−1) (mm) (mmhPa−1) (mmppm−1)

Observation Estimation 0.527 −0.177 2.003
Error ±0.229 ±0.065 ±0.539
p value 0.025 0.008 0.000

Simulation with 360 ppmCO2 Estimation 0.771 −0.079 2.704
Error ±0.064 ±0.018 ±0.150
p value <0.001 <0.001 <0.001

Observation Estimation 0.713 0.057 1.574 −0.217
Error ±0.248 ±0.148 ±0.583 ±0.125
p value 0.006 0.704 0.009 0.088

Simulation with 360 ppmCO2 Estimation 0.827 −0.010 2.576 −0.065
Error ±0.069 ±0.041 ±0.161 ±0.035
p value <0.001 0.812 <0.001 <0.001

Observation Estimation 0.709 1.734 −0.164 −0.001
Error ±0.246 ±0.572 ±0.059 ±0.001
p value 0.006 0.004 0.008 0.687

Simulation with real CO2 Estimation 0.779 2.322 −0.099 0.008
Error ±0.058 ±0.134 ±0.014 ±0.000
p value <0.001 <0.001 <0.001 <0.001
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Figure 1. Location of the Great Western Woodlands sampling site, Western Australia. The
underlying map shows mean annual precipitation (MAP). We also show the location of other
sites across Australia where Callitris have been sampled (data from International Tree-Ring
Data Bank), and the locations of the nearest meteorological stations to the sampling site.

4792

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4769/2015/bgd-12-4769-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4769–4800, 2015

A model analysis of
climate and CO2

controls on tree
growth in a semi-arid

woodland

G. Li et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0
R

in
g 

W
id

th
 (

m
m

)

1880 1900 1920 1940 1960 1980 2000

0

2

4

6

8

10

Year

N
o.

 o
f T

re
es

Figure 2. Interannual variability in tree-ring widths of Callitris columellaris from the Great
Western Woodlands, Western Australia. In the top panel, the black line is the mean of the
observations, and the grey bars show the SD of the individual sampled trees. The blue line in
the bottom panel shows the number of trees sampled for each interval.
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Figure 3. Climate at the Great Western Woodlands site. The plot shows mean annual
temperature, precipitation, photosynthetically active radiation (PAR) and the ratio of actual to
equilibrium evapotranspiration (α). The observed changes in [CO2] are shown for comparison.
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to the present, with [CO2] set at 360 ppm. The black line is the mean of observations, and the
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simulations.
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Figure 5. Simulated and observed responses of tree growth to climate: partial residual plots
based on the GLM analysis, obtained using the visreg package in R, are shown. The upper
plots show results from analyses in which the predictor variables are (a) photosynthetically
active radiation (PAR0), the ratio of actual to potential evapotranspiration (α) and mean annual
temperature (MAT) and (b) PAR0, α, MAT and vapour pressure deficit (VPD).
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Figure 6. Comparison of simulated ring width in simulations with fixed (blue line) and time-
varying (red line) [CO2]. The black line is the mean of the observed ring widths.
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Figure 7. Simulated and observed response of tree radial growth to [CO2]: partial residual
plots based on the GLM analysis, obtained using the visreg package in R, are shown. The
dependent variable is mean ring width (from 1950 and to 2012). The predictor variables are
annual photosynthetically active radiation (PAR0), vapour pressure deficit (VPD), the ratio of
actual to potential evapotranspiration (α), and monthly [CO2].
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Figure 8. Impact of changing [CO2] on the values of parameters estimated by Bayesain
optimization. The graph shows the percentage change to the mean value of each of the
parameters fine-root turnover time (τr), fine-root specific respiration rate (rr), sapwood specific
respiration rate (rs) and ratio of fine-root mass to foliage area (ζ ) for 30 year moving windows
since 1920, using the appropriate [CO2] for each window. X axis is the beginning year of each
30 year moving window.
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Figure 9. Simulation of radial growth in response to changing climate and observed [CO2],
allowing for the effect of changing allocation to fine roots.
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