542 research outputs found

    Health outcomes of children born to mothers with chronic kidney disease: a pilot study

    Get PDF
    This study aimed to study the health of children born to mothers with chronic kidney disease. Twenty-four children born to mothers with chronic kidney disease were compared with 39 matched control children born to healthy mothers without kidney disease. The well-being of each child was individually assessed in terms of physical health, neurodevelopment and psychological health. Families participating with renal disease were more likely to be from lower socio-economic backgrounds. Significantly fewer vaginal deliveries were reported for mothers with renal disease and their infants were more likely to experience neonatal morbidity. Study and control children were comparable for growth parameters and neurodevelopment as assessed by the Griffiths scales. There was no evidence of more stress amongst mothers with renal disease or of impaired bonding between mother and child when compared to controls. However, there was evidence of greater externalizing behavioral problems in the group of children born to mothers with renal disease. Engaging families in such studies is challenging. Nonetheless, families who participated appreciated being asked. The children were apparently healthy but there was evidence in this small study of significant antenatal and perinatal morbidity compared to controls. Future larger multi-center studies are required to confirm these early findings

    An unusual pi* shape resonance in the near-threshold photoionization of S(1) para-difluorobenzene

    Get PDF
    Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1 p-difluorobenzene are shown to be explained by a shape resonance in the b(2g) symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual pi* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.Bellm, SM: Davies, JA: Whiteside, PT; Guo, J: Powis, I; and Reid KL

    Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    Get PDF
    Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed

    Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    Get PDF
    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization

    Skin colour changes during experimentally-induced sickness

    Get PDF
    This project was supported by Swedish foundation for humanities and social sciences and a British Academy Wolfson Foundation Research Professorship grant. AH is supported by a studentship from the Biotechnology and Biological Sciences Research Council.Skin colour may be an important cue to detect sickness in humans but how skin colour changes with acute sickness is currently unknown. To determine possible colour changes, 22 healthy Caucasian participants were injected twice, once with lipopolysaccharide (LPS, at a dose of 2 ng/kg body weight) and once with placebo (saline), in a randomised cross-over design study. Skin colour across 3 arm and 3 face locations was recorded spectrophotometrically over a period of 8 hours in terms of lightness (L∗), redness (a∗) and yellowness (b∗) in a manner that is consistent with human colour perception. In addition, carotenoid status was assessed as we predicted that a decrease it skin yellowness would reflect a drop in skin carotenoids. We found an early change in skin colouration 1-3 hours post LPS injection with facial skin becoming lighter and less red whilst arm skin become darker but also less red and less yellow. The LPS injection also caused a drop in plasma carotenoids from 3 hours onwards. However, the timing of the carotenoid changes was not consistent with the skin colour changes suggesting that other mechanisms, such as a reduction of blood perfusion, oxygenation or composition. This is the first experimental study characterising skin colour associated with acute illness, and shows that changes occur early in the development of the sickness response. Colour changes may serve as a cue to health, prompting actions from others in terms of care-giving or disease avoidance. Specific mechanisms underlying these colour changes require further investigation.PostprintPeer reviewe

    The alimentary impact of the hemp seed

    Get PDF
    Hemp seed and hemp seed oil can supply us with many important substances. Their essential fatty acid compositions are favourable, but they may contain non-psychotropic cannabinoids. Emerging data show that these components can influence the health status of the population beneficially. Some data also showed trace amounts of tetrahydrocannabinol in seed oils, the main psychotropic cannabinoid that is contraindicated.Our aim was to examine cannabinoids and fatty acid composition as well as metal and non-metal element compositions in products, like hemp seed oil and chopped hemp seed capsule.The cannabinoids were separated by thin layer chromatography. Fatty acid composition was determined with gas chromatography, and elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si, Sn, Sr, V, and Zn) were measured by inductively coupled plasma optical emission spectrometric method. Selenium was determined with polarographic analyser.Cannabinoids were not detectable by thin layer chromatography, so hemp seed oil, as well as the capsule, have no psychotropic adverse effect. Our data showed that hemp seed contains essential fatty acids close to the recommended ratio. The B and Se concentrations of the oils and the P concentration of the capsule are also relevant

    Graduate entry to medicine in Iran

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>In Iran medical students are selected from high school graduates via a very competitive national university entrance exam. New proposals have been seriously considered for admitting students from those with bachelor degrees. We assessed the opinions of different stakeholders on the current situation of admission into medicine in Iran, and their views on positive and negative aspects of admitting graduates into medicine.</p> <p>Methods</p> <p>We conducted five focus group discussions and seven in-depth interviews with stakeholders including medical students, science students, university professors of basic sciences, medical education experts, and policy makers. Main themes were identified from the data and analyzed using content analysis approach.</p> <p>Results</p> <p>Medical students believed "graduate admission" may lead to a more informed choice of medicine. They thought it could result in admission of students with lower levels of academic aptitude. The science students were in favor of "graduate admission". The education experts and the professors of basic science all mentioned the shortcomings of the current system of admission and considered "graduate admission" as an appropriate opportunity for correcting some of the shortcomings. The policy makers pointed out the potential positive influences of "graduate admission" on strengthening basic science research. They thought, however, that "graduate admission" may result in lengthening the overall duration of medical education, which is already long in Iran (over 7 years). On the whole, the participants thought that "graduate admission" is a step in the right direction for improving quality of medical education.</p> <p>Conclusion</p> <p>"Graduate admission" has the potential to correct some of shortcomings of medical education. Unlike other countries where "graduate admission" is used mainly to admit students who are mentally mature, in Iran the main objective seems to be strengthening basic sciences.</p

    Ionization of pyridine: interplay of orbital relaxation and electron correlation

    Get PDF
    The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green’s function and the outer-valence Green’s function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17–120 eV. The lowest four states of the pyridine radical cation, namely, 2A2 (1a 2 −1 1a2−1 ), 2A1(7a 1 −1 7a1−1), 2B1(2b 1 −1 2b1−1), and 2B2(5b 2 −1 5b2−1), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)−1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach
    corecore