771 research outputs found

    The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR

    Get PDF
    Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane

    Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin

    Get PDF
    Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation-prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid\u2013liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress-inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival

    A randomised controlled trial of oxygen therapy on growth and development of preterm infants

    Get PDF
    Background: Physiological studies have shown that many preterm infants and infants with chronic lung disease may suffer chronic hypoxaemia, which possibly leads to poor growth and development. Anecdotal reports indicate that there is a drive to increase the oxygen saturation target range to a higher level in these infants due primarily to perceived benefits derived from clinical experience and from uncontrolled observational studies of babies discharged on home oxygen. Objective The BOOST (Benefits Of Oxygen Saturation Targeting) trial is the first randomised trial to assess the long-term benefits and harms of two different oxygen saturation target ranges. Methods: BOOST was a multicentre, double blinded, randomised controlled trial that enrolled 358 infants born at less than 30 weeks� gestation who remained oxygen-dependent at 32 weeks postmenstrual age. They were randomly assigned to target either a functional oxygen saturation range of 91-94% (standard or control group) or 95-98% (higher or treatment group). The primary outcomes were growth and neurodevelopmental measures at 12 months corrected age. Secondary outcomes included length of hospital stay, retinopathy of prematurity, health service utilisation, parental stress, and infant temperament. Results: Prognostic baseline characteristics did not differ between the two groups. Mean birth weight and gestational age of enrolled infants was 917g and 26.5 weeks respectively. The rate of antenatal corticosteroid use was 83%

    Tau protein, A beta 42 and S-100B protein in cerebrospinal fluid of patients with dementia with Lewy bodies

    Get PDF
    The intra vitam diagnosis of dementia with Lewy bodies (DLB) is still based on clinical grounds. So far no technical investigations have been available to support this diagnosis. As for tau protein and beta-amyloid((1-42)) (Abeta42), promising results for the diagnosis of Alzheimer's disease ( AD) have been reported; we evaluated these markers and S-100B protein in cerebrospinal fluid (CSF), using a set of commercially available assays, of 71 patients with DLB, 67 patients with AD and 41 nondemented controls (NDC) for their differential diagnostic relevance. Patients with DLB showed significantly lower tau protein values compared to AD but with a high overlap of values. More prominent differences were observed in the comparison of DLB patients with all three clinical core features and AD patients. Abeta42 levels were decreased in the DLB and AD groups versus NDC, without significant subgroup differences. S-100B levels were not significantly different between the groups. Tau protein levels in CSF may contribute to the clinical distinction between DLB and AD, but the value of the markers is still limited especially due to mixed pathology. We conclude that more specific markers have to be established for the differentiation of these diseases. Copyright (C) 2005 S. Karger AG, Basel

    Loss of full length CtBP1 expression enhances the invasive potential of human melanoma

    Get PDF
    BACKGROUND: The C-terminal binding protein 1 (CtBP1) is a known co-repressor of gene transcription. We recently revealed that CtBP1 expression is lost in melanoma cells and melanoma inhibitory activity (MIA) expression is subsequently increased. The present study was performed to evaluate a more general role of CtBP1 in human melanoma and identify further CtBP1-regulated target genes. METHODS: Sequence analysis and expression profile of CtBP1 in melanoma cell lines were done by PCR. Boyden Chamber assays and co-immunoprecipitation were performed to investigate the functional role of CtBP1. Gene expression analysis and micro array data were used to define target genes. RESULTS: Interestingly, we detected an alternative splice product of CtBP1 with unknown function whose expression is induced at reduction of full length CtBP1. Overexpression of full length CtBP1 in melanoma cells had no effect on cell proliferation but did influence cell migration and invasiveness. To understand the effect of CtBP1 we identified putative LEF/TCF target genes found to be strongly expressed in melanoma using DNA microarray analysis. We focused on fourteen genes not previously associated with melanoma. Detailed analysis revealed that most of these were known to be involved in tumor metastasis. Eleven genes had expression profiles associated with melanoma cell invasiveness. CONCLUSION: In summary, this study revealed that reduction of CtBP1 expression is correlated with migratory, invasive potential of melanoma cells

    Re-examination of siRNA specificity questions role of PICH and Tao1 in the spindle checkpoint and identifies Mad2 as a sensitive target for small RNAs

    Get PDF
    The DNA-dependent adenosine triphosphatase (ATPase) Plk1-interacting checkpoint helicase (PICH) has recently been implicated in spindle checkpoint (SAC) signaling (Baumann et al., Cell 128(1):101–114, 2007). Depletion of PICH by siRNA abolished the SAC and resulted in an apparently selective loss of Mad2 from kinetochores, suggesting a role for PICH in the regulation of the Mad1–Mad2 interaction. An apparent rescue of SAC functionality by overexpression of PICH in PICH-depleted cells initially seemed to confirm a role for PICH in the SAC. However, we have subsequently discovered that all PICH-directed siRNA oligonucleotides that abolish the SAC also reduce Mad2 mRNA and protein expression. This reduction is functionally significant, as PICH siRNA does not abolish SAC activity in a cell line that harbors a bacterial artificial chromosome driving the expression of murine Mad2. Moreover, we identified several siRNA duplexes that effectively deplete PICH but do not significantly affect SAC functionality or Mad2 abundance or localization. Finally, we discovered that the ability of overexpressed PICH to restore SAC activity in PICH-depleted cells depends on sequestration of the mitotic kinase Plk1 rather than ATPase activity of PICH, pointing to an underlying mechanism of “bypass suppression.” In support of this view, depletion or inhibition of Plk1 also rescued SAC activity in cells harboring low levels of Mad2. This observation suggests that a reduction of Plk1 activity partially compensates for reduced Mad2 levels and argues that Plk1 normally reduces the strength of SAC signaling. Collectively, our results question the role of PICH in the SAC and instead identify Mad2 as a sensitive off target for small RNA duplexes. In support of the latter conclusion, our evidence suggests that an off-target effect on Mad2 may also contribute to explain the apparent role of the Tao1 kinase in SAC signaling (Draviam et al., Nat Cell Biol 9(5):556–564, 2007)

    Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study.

    Full text link
    peer reviewedThe locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.Bluefield ProjectEuropean Union Joint Programme—Neurodegenerative Disease Researc
    corecore