22 research outputs found

    The influence of dietary β-glucan, PAMP exposure and Aeromonas salmonicida on apoptosis modulation in common carp (Cyprinus carpio)

    No full text
    The association between beta-glucan (MacroGard (R)) supplemented feed and apoptosis in immune-related organs of common carp (Cyprinus carpio) was studied using fluorescence microscopy and real-time PCR. In addition the effect of Aeromonas salmonicida, LPS and Poly(I:C) injections on this relationship was evaluated. Whilst acridine orange staining revealed that apoptosis levels were independent of MacroGard (R) and LPS/Poly(1:C) administration or their combination, it was shown that injection with A. salmonicida increased the percentage of apoptotic cells irrespective of the feeding regime. It was apparent that in all the treatments gene expression profiles displayed organ and time dependency. For example no effect was observed at 7 days of MacroGard (R) administration while 25 days of feeding led to increased iNOS expression and differential up-regulation of anti- or pro-apoptotic genes depending on organ. This may indicate differences in NO sensitivity. MacroGard (R) also led to an elevation of pro- as well as anti-apoptotic genes in LPS or Poly(1:C) injected fish, while LPS/Poly(I:C) alone had little effect. A. salmonicida caused enhanced iNOS expression and it is possible that the type of apoptosis pathway induced is organ dependent as Caspase 9 is induced in mid-gut but not in pronephros. These results indicate that MacroGard (R) feeding alone or in combination with other pathogenic factors did not induce significant apoptosis in immune organ

    A novel approach for studying the indoor dispersion of aroma through computational fluid dynamics

    No full text
    We propose a mechanistic modelling approach for studying the indoor dispersion of aroma compounds which are released from, for instance, food products. The approach combines the indoor velocity field with a release model for aroma compounds. The release mass flux is expressed as a function of key variables such as mass transfer and gas-liquid partition coefficients, and the source geometry. The transport properties of ambient air are assumed to be independent of the aroma concentration; hence release and dispersion problems can be solved separately. First, the velocity field is obtained as solution of the fluid flow problem through computational fluid dynamics (CFD). The turbulent velocity field is then used to predict the time evolution of concentration of an aroma compound released by a constant rate source, in an initially aroma-free environment. These results are interpreted in terms of a step response function. The aroma concentration as a function of time is finally estimated by convolving the possibly time-varying release mass flux and the response function associated with the position of interest. The modelling approach is flexible and computationally effective, since different release models as well as the release of distinct aroma compounds can be directly studied by taking into account a same velocity field, without any additional CFD simulation. The validity of the approach is assessed from measurements of aroma concentration in a 140m3 room, under constant release mass flux. The approach is also illustrated for a case where the release mass flux is not constant in time. © 2013 John Wiley & Sons, Ltd
    corecore