39 research outputs found

    Organic residues in archaeology - the highs and lows of recent research

    Get PDF
    YesThe analysis of organic residues from archaeological materials has become increasingly important to our understanding of ancient diet, trade and technology. Residues from diverse contexts have been retrieved and analysed from the remains of food, medicine and cosmetics to hafting material on stone arrowheads, pitch and tar from shipwrecks, and ancient manure from soils. Research has brought many advances in our understanding of archaeological, organic residues over the past two decades. Some have enabled very specific and detailed interpretations of materials preserved in the archaeological record. However there are still areas where we know very little, like the mechanisms at work during the formation and preservation of residues, and areas where each advance produces more questions rather than answers, as in the identification of degraded fats. This chapter will discuss some of the significant achievements in the field over the past decade and the ongoing challenges for research in this area.Full text was made available in the Repository on 15th Oct 2015, at the end of the publisher's embargo period

    Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions

    Get PDF
    The chemical inertness of the defect-free basal plane confers environmental stability to MoS2 single-layers, but it also limits their chemical versatility and catalytic activity. The stability of the pristine MoS2 basal plane against oxidation under ambient conditions is a widely accepted assumption in the interpretation of various studies and applications. However, single-atom level structural investigations reported here reveal that oxygen atoms spontaneously incorporate into the basal plane of MoS2 single layers during ambient exposure. Our scanning tunneling microscopy investigations reveal a slow oxygen substitution reaction, upon which individual sulfur atoms are one by one replaced by oxygen, giving rise to solid solution type 2D MoS2-xOx crystals. O substitution sites present all over the basal plane act as single-atomic active reaction centers, substantially increasing the catalytic activity of the entire MoS2 basal plane for the electrochemical H2 evolution reaction.Comment: 6 pages, 5 figure

    Neues zur Urbanistik der Zivilstädte von Aquincum-Budapest und Carnuntum-Petronell

    Full text link

    Yield and Sward Composition Responses of Natural Grasslands to Treatments Meeting Sustainability

    No full text
    An outstanding part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be managed, the grassland based animal husbandry can be an efficient way of food production. In addition, these ecosystems have an important role in carbon sequestration, and with their rich flora – and fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but, looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. Three rates of compost (10 t/ha, 20 t/ha, 30 t/ha) were tested on 3 m X 10 m experimental plots. Every treatment had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots, measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield of pasture showed positive responses to the rates of composts. The increase in dry matter yield was partly due to some positive changes in sward composition. It means that the proportions of grass species with higher yield potential increased in ground cover of the sward without depressing out valuable native species of diverse natural grasslands. The research results indicate that the use of organic compost can be an efficient way to increase grass yields in a sustainable way
    corecore