36 research outputs found

    Bacterial and fungal microflora in surgically removed lung cancer samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical and experimental data suggest an association between the presence of bacterial and/or fungal infection and the development of different types of cancer, independently of chemotherapy-induced leukopenia. This has also been postulated for the development of lung cancer, however the prevalence and the exact species of the bacteria and fungi implicated, have not yet been described.</p> <p>Aim</p> <p>To determine the presence of bacterial and fungal microflora in surgically extracted samples of patients with lung cancer.</p> <p>Materials and methods</p> <p>In this single-center prospective, observational study, tissue samples were surgically extracted from 32 consecutive patients with lung cancer, and reverse-transcription polymerase chain reaction (RT-PCR) was used to identify the presence of bacteria and fungi strains.</p> <p>Results</p> <p>The analysis of the electrophoresis data pointed out diversity between the samples and the strains that were identified. Mycoplasma strains were identified in all samples. Strains that appeared more often were Staphylococcus epidermidis, Streptococcus mitis and Bacillus strains, followed in descending frequency by Chlamydia, Candida, Listeria, and Haemophilus influenza. In individual patients Legionella pneumophila and Candida tropicalis were detected.</p> <p>Conclusions</p> <p>A diversity of pathogens could be identified in surgically extracted tissue samples of patients with lung cancer, with mycoplasma strains being present in all samples. These results point to an etiologic role for chronic infection in lung carcinogenesis. Confirmation of these observations and additional studies are needed to further characterize the etiologic role of inflammation in lung carcinogenesis.</p

    Interplay between transglutaminases and heparan sulphate in progressive renal scarring

    Get PDF
    Transglutaminase-2 (TG2) is a new anti-fibrotic target for chronic kidney disease, for its role in altering the extracellular homeostatic balance leading to excessive build-up of matrix in kidney. However, there is no confirmation that TG2 is the only transglutaminase involved, neither there are strategies to control its action specifically over that of the conserved family-members. In this study, we have profiled transglutaminase isozymes in the rat subtotal nephrectomy (SNx) model of progressive renal scarring. All transglutaminases increased post-SNx peaking at loss of renal function but TG2 was the predominant enzyme. Upon SNx, extracellular TG2 deposited in the tubulointerstitium and peri-glomerulus via binding to heparan sulphate (HS) chains of proteoglycans and co-associated with syndecan-4. Extracellular TG2 was sufficient to activate transforming growth factor-β1 in tubular epithelial cells, and this process occurred in a HS-dependent way, in keeping with TG2-affinity for HS. Analysis of heparin binding of the main transglutaminases revealed that although the interaction between TG1 and HS is strong, the conformational heparin binding site of TG2 is not conserved, suggesting that TG2 has a unique interaction with HS within the family. Our data provides a rationale for a novel anti-fibrotic strategy specifically targeting the conformation-dependent TG2-epitope interacting with HS

    Identification of genes involved in breast cancer and breast cancer stem cells

    No full text
    Panagiotis Apostolou, Maria Toloudi, Ioannis Papasotiriou Research and Development Department, Research Genetic Cancer Centre Ltd, Florina, Greece Abstract: Breast cancer is the most frequent type of cancer in women. Great progress has been made in its treatment but relapse is common. One hypothesis to account for the high recurrence rates is the presence of cancer stem cells (CSCs), which have the ability to self-renew and differentiate into multiple malignant cell types. This study aimed to determine genes that are expressed in breast cancer and breast CSCs and to investigate their correlation with stemness. RNA was extracted from established breast cancer cell lines and from CSCs derived from five different breast cancer patients. DNA microarray analysis was performed and any upregulated genes were also studied in other cancer types, including colorectal and lung cancer. For genes that were expressed only in breast cancer, knockdown-based experiments were performed. Finally, the gene expression levels of stemness transcription factors were measured. The outcome of the analysis indicated a group of genes that were aberrantly expressed mainly in breast cancer cells with stemness properties. Knockdown experiments confirmed the impact of several of these on NANOG, OCT3/4, and SOX2 transcription factors. It seems that several genes that are not directly related with hormone metabolism and basic signal transduction pathways might have an important role in relapse and disease progression and, thus, can be targeted for new treatment approaches for breast cancer. Keywords: breast cancer, cancer stem cells, stemness, DNA microarra

    Data-driven analysis and druggability assessment methods to accelerate the identification of novel cancer targets

    No full text
    Over the past few decades, drug discovery has greatly improved the outcomes for patients, but several challenges continue to hinder the rapid development of novel drugs. Addressing unmet clinical needs requires the pursuit of drug targets that have a higher likelihood to lead to the development of successful drugs. Here we describe a bioinformatic approach for identifying novel cancer drug targets by performing statistical analysis to ascertain quantitative changes in expression levels between protein-coding genes, as well as co-expression networks to classify these genes into groups. Subsequently, we provide an overview of druggability assessment methodologies to prioritize and select the best targets to pursue

    P-042 The genetic profile of pancreatic circulating tumor cells

    No full text

    Rapid microwave-enhanced synthesis of C5-alkynyl pyranonucleosides as novel cytotoxic antitumor agents

    No full text
    A microwave-assisted, one-pot, coupling reaction for the synthesis of C5-alkynyl-uracil and cytosine glucopyranonucleosides has been developed. The reaction is carried out under standard Sonogashira coupling conditions from glucopyranonucleosides of 5-iodouracil or 5-iodocytosine and various terminal alkynes. All compounds were evaluated for their cytostatic and antiviral activity. The 5-phenylethynyluracil pyranonucleoside derivative 6a showed the most promising cytostatic activity (50% inhibitory concentration in the lower micromolar range). No meaningful antiviral activity was recorded. (C) 2013 Elsevier Ltd. All rights reserved

    Stereocontrolled synthesis of 4 '-C-cyano and 4 '-C-cyano-4 '-deoxy pyrimidine pyranonucleosides as potential chemotherapeutic agents

    No full text
    A new series of 4'-C-cyano and 4'-C-cyano-4'-deoxy pyrimidine pyranonucleosides has been designed and synthesized. Commercially available 1,2,3,4,6-penta-O-acetyl-D-mannopyranose (1) was condensed with silylated 5-fluorouracil, uracil, and thymine, respectively to afford after deacetylation 1-(alpha-D-mannopyranosyl)nucleosides (2a-c). Subjecting 2a-c to the sequence of specific acetalation, selective protection of the primary hydroxyl group and oxidation, the 4'-ketonucleosides 6a-c and 7c were obtained. Reaction of compounds 6a,b, and 7c with sodium cyanide and subsequent deprotection gave the target 1-(4'-C-cyano-alpha-D-mannopyranosyl)nucleosides 12a-c. Deoxygenation at the 4'-position of cyanohydrins 8a,b, and 11c followed by deprotection led to the desired 1-(4'-C-cyano-4'-deoxy-alpha-D-talopyranosyl)nucleosides (15a-c). The newly synthesized compounds were evaluated for their potential antiviral and cytostatic activities in cell culture. (C) 2012 Elsevier Ltd. All rights reserved
    corecore