98 research outputs found

    Correlations Between Individuals' Characteristics and Spinal Stiffness in Individuals With and Without Back Pain: A Combined Analysis of Multiple Data Sets.

    Get PDF
    OBJECTIVE: The purpose of this study was to describe the correlations between individual characteristics and spinal stiffness as measured with different spinal stiffness measurement devices in individuals with and without back pain. METHODS: A secondary analysis of 3 adult data sets obtained using 3 different devices, in 2 spinal regions, from a total of 5 separate cross-sectional studies was conducted. Differences in spinal stiffness between men and women and in the strength of correlations among spinal stiffness and age and anthropometric characteristics were evaluated using either the t test for independent samples, Pearson's correlation coefficient, or Kendall's τ rank correlation coefficient. RESULTS: As expected, results varied between data sets; however, few factors had consistent correlations. Specifically, spinal stiffness was significantly lower in women than men in all 3 data sets. Height was positively correlated with spinal stiffness across all data sets. Although weight was correlated with thoracic stiffness, its correlation with lumbar stiffness varied. In 2 data sets, body mass index was inversely associated with lumbar spinal stiffness, whereas results from the thoracic spine region revealed a positive correlation. The results for 1 data set suggest that physiological measurement evaluating body weight distribution may also affect spinal stiffness; however, the specific correlation remains unclear. CONCLUSION: Despite data set differences, significant correlations were observed, indicating that participants' characteristics appear to affect spinal stiffness measurement

    Clinicians' Ability to Detect a Palpable Difference in Spinal Stiffness Compared With a Mechanical Device.

    Get PDF
    OBJECTIVE: The purpose of this study was to quantify the threshold at which clinicians can detect a difference in spinal stiffness of the thoracic and lumbar spine via palpation and then determine if this detection threshold would affect a clinician's ability to identify changes in spinal stiffness as measured by an objective instrument. METHODS: In this study, the threshold at which a change in spinal stiffness was detected was quantified in 12 experienced clinicians (physical therapists and doctors of chiropractic) by changing the differential stiffness in 2 inflatable targets until the clinician could no longer identify which was stiffer. In the second part of the study, clinicians then were asked to palpate pre-identified pairs of vertebrae in an asymptomatic volunteer and to identify the stiffer of the pair (T7 and L3, T7 and L4, L3 and L4), and the biomechanical stiffness of each vertebral pair was quantified objectively by a validated instrument. RESULTS: The mean stiffness detection threshold for the clinicians was 8%. Objective measurement of the stiffness differential between vertebral pairs was 30% for T7* and L3, 20% for T7* and L4, and 10% for L3* and L4 (*denotes the stiffer of the pair). Ten of 12 clinicians correctly identified T7 as stiffer when compared with L3 and T7 as stiffer than L4. Alternatively, when the differential vertebral pair stiffness was similar to the stiffness detection threshold (~8%), clinicians were less successful in identifying the stiffer vertebra of the pair; 4 of 12 clinicians correctly identified L3 as being stiffer compared with L4. CONCLUSION: These results suggest that the physiological limits of human palpation may limit the ability of clinicians to identify small alterations in spine stiffness

    Investigation of the factors influencing spinal manipulative therapy force transmission through the thorax: A cadaveric study

    Get PDF
    Abstract Spinal manipulative therapy (SMT) clinical effects are believed to be linked to its force–time profile characteristics. Previous studies have revealed that the force measured at the patient-table interface is most commonly greater than the one applied at the clinician-patient interface. The factors explaining this force amplification remains unclear. Objective To determine the difference between the force applied to a cadaveric specimen’s thoracic spine and the resulting force measured by a force-sensing table, as well as to evaluate the relationship between this difference and both the SMT force–time characteristics and the specimens’ characteristics. Methods Twenty-five SMTs with different force–time profiles were delivered by an apparatus at the T7 vertebra of nine human cadaveric specimens lying prone on a treatment table equipped with a force plate. The difference between the force applied by the apparatus and the resulting force measured by the force plate was calculated in absolute force (Fdiff) and as the percentage of the applied force (Fdiff%). Kinematics markers were inserted into T6 to T8 spinous and transverse processes to evaluate vertebral displacements during the SMT thrusts. Mixed-effects linear models were run to evaluate the variance in Fdiff and Fdiff% explained by SMT characteristics (peak force, thrust duration and force application rate), T6 to T8 relative and total displacements, and specimens’ characteristics (BMI, height, weight, kyphosis angle, thoracic thickness). Results Sixty percent of the trials showed lower force measured at the force plate than the one applied at T7. Fdiff¾ was significantly predicted (R2marginal = 0.54) by peak force, thrust duration, thoracic thickness and T6–T7 relative displacement in the z-axis (postero-anterior). Fdiff% was significantly predicted (R2marginal = 0.56) by force application rate, thoracic thickness and total T6 displacements. For both dependant variables, thoracic thickness showed the highest R2marginal out of all predictors. Conclusion Difference in force between the clinician-patient and the patient-table interfaces is influenced by SMT force–time characteristics and by thoracic thickness. How these differences in force are associated with vertebral displacements remains unclear. Although further studies are needed, clinicians should consider thorax thickness as a possible modulator of forces being transmitted through it during prone SMT procedures

    Devices used to measure force-time characteristics of spinal manipulations and mobilizations: A mixed-methods scoping review on metrologic properties and factors influencing use

    Get PDF
    Background: Spinal manipulations (SMT) and mobilizations (MOB) are interventions commonly performed by many health care providers to manage musculoskeletal conditions. The clinical effects of these interventions are believed to be, at least in part, associated with their force-time characteristics. Numerous devices have been developed to measure the force-time characteristics of these modalities. The use of a device may be facilitated or limited by different factors such as its metrologic properties.Objectives: This mixed-method scoping review aimed to characterize the metrologic properties of devices used to measure SMT/MOB force-time characteristics and to determine which factors may facilitate or limit the use of such devices within the context of research, education and clinical practice. Methods: This study followed the Joanna Briggs Institute's framework. The literature search strategy included four concepts: (1) devices, (2) measurement of SMT or MOB force-time characteristics on humans, (3) factors facilitating or limiting the use of devices, and (4) metrologic properties. Two reviewers independently reviewed titles, abstracts and full articles to determine inclusion. To be included, studies had to report on a device metrologic property (e.g., reliability, accuracy) and/or discuss factors that may facilitate or limit the use of the device within the context of research, education or clinical practice. Metrologic properties were extracted per device. Limiting and facilitating factors were extracted and themes were identified. Results: From the 8,998 studies initially retrieved, 46 studies were finally included. Ten devices measuring SMT/MOB force-time characteristics at the clinician-patient interface and six measuring them at patient-table interfaces were identified. Between zero and eight metrologic properties were reported per device: measurement error (defined as validity, accuracy, fidelity, or calibration), reliability/repeatability, coupling/crosstalk effect, linearity/correlation, sensitivity, variability, drift, and calibration. From the results, five themes related to the facilitating and limiting factors were developed: user-friendliness and versatility, metrologic/intrinsic properties, cost and durability, technique application, and feedback. Conclusion: Various devices are available to measure SMT/MOB force-time characteristics. Metrologic properties were reported for most devices, but terminology standardization is lacking. The usefulness of a device in a particular context should be determined considering the metrologic properties as well as other potential facilitating and limiting factors

    Force distribution within spinal tissues during posterior to anterior spinal manipulative therapy: a secondary analysis

    Get PDF
    Background: Previous studies observed that the intervertebral disc experiences the greatest forces during spinal manipulative therapy (SMT) and that the distribution of forces among spinal tissues changes as a function of the SMT parameters. However, contextualized SMT forces, relative to the ones applied to and experienced by the whole functional spinal unit, is needed to understand SMT's underlying mechanisms. Aim: To describe the percentage force distribution between spinal tissues relative to the applied SMT forces and total force experienced by the functional unit. Methods: This secondary analysis combined data from 35 fresh porcine cadavers exposed to a simulated 300N SMT to the skin overlying the L3/L4 facet joint via servo-controlled linear motor actuator. Vertebral kinematics were tracked optically using indwelling bone pins. The functional spinal unit was then removed and mounted on a parallel robotic platform equipped with a 6-axis load cell. The kinematics of the spine during SMT were replayed by the robotic platform. By using serial dissection, peak and mean forces induced by the simulated SMT experienced by spinal structures in all three axes of motion were recorded. Forces experienced by spinal structures were analyzed descriptively and the resultant force magnitude was calculated. Results: During SMT, the functional spinal unit experienced a median peak resultant force of 36.4N (IQR: 14.1N) and a mean resultant force of 25.4N (IQR: 11.9N). Peak resultant force experienced by the spinal segment corresponded to 12.1% of the total applied SMT force (300N). When the resultant force experienced by the functional spinal unit was considered to be 100%, the supra and interspinous ligaments experienced 0.3% of the peak forces and 0.5% of the mean forces. Facet joints and ligamentum flavum experienced 0.7% of the peak forces and 3% of the mean forces. Intervertebral disc and longitudinal ligaments experienced 99% of the peak and 96.5% of the mean forces. Conclusion: In this animal model, a small percentage of the forces applied during a posterior-to-anterior SMT reached spinal structures in the lumbar spine. Most SMT forces (over 96%) are experienced by the intervertebral disc. This study provides a novel perspective on SMT force distribution within spinal tissues

    Center of rotation locations during lumbar spine movements: a scoping review protocol.

    Get PDF
    OBJECTIVE: The objective of this review is to identify and map current literature describing the center of rotation locations and migration paths during lumbar spine movements. INTRODUCTION: The importance of lumbar spine kinematics has been described and altered kinematics has been associated with pain and injury. Intervertebral segments' center of rotations, the point around which spinal segments rotate, are important for determining the lumbar spine kinematics features and the potential for increased injury risk during movements. Although many studies have investigated the center of rotations of humans' lumbar spine, no review has summarized and organized the state of the science related to center of rotation locations and migration paths of the lumbar spine during lumbar spine movements. INCLUSION CRITERIA: This review will consider studies that include human lumbar spines of any age and status condition (e.g. heathy, pathological) during lumbar spine movements. Quantitative study designs, including clinical, observational, laboratory biomechanical experimental studies, mathematical and computer modelling studies will be considered. Only studies published in English will be included, and there will be no limit on dates of publication. METHODS: PubMed, MEDLINE, Embase, the Cochrane Library Controlled Register of Trials, CINAHL, ACM Digital Library, Compendex, Inspec, Web of Science, Scopus, Google Scholar, and dissertation and theses repositories will be searched. After titles and abstracts screening of identified references, two independent reviewers will screen the full-text of identified studies and extract data. Data will be summarized and categorized, and a comprehensive narrative summary will be presented with the respective results

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    Pregabalin reduces postoperative opioid consumption and pain for 1 week after hospital discharge, but does not affect function at 6 weeks or 3 months after total hip arthroplasty

    Get PDF
    BACKGROUND: This study examined whether a perioperative regimen of pregabalin added to celecoxib improved pain scores and functional outcomes postdischarge up to 3 months after total hip arthroplasty (primary outcome) and acute postoperative pain and adverse effects (secondary outcomes). METHODS: One hundred and eighty-four patients were enrolled in a randomized, double-blind, placebo-controlled study. Two hours before receiving a spinal anaesthetic and undergoing surgery, patients received celecoxib 400 mg p.o. and were randomly assigned to receive either pregabalin 150 mg p.o. or placebo p.o. After surgery, patients received pregabalin 75 mg or placebo twice daily in hospital and for 7 days after discharge. Patients also received celecoxib 200 mg every 12 h for 72 h and morphine i.v. patient-controlled analgesia for 24 h. Pain and function were assessed at baseline, 6 weeks, and 3 months after surgery. RESULTS: There was no difference between groups in physical function or incidence and intensity of chronic pain 3 months after total hip arthroplasty. The pregabalin group used less morphine [mean (sd): 39.85 (28.1) mg] than the placebo group [54.01 (31.2) mg] in the first 24 h after surgery (P<0.01). Pain scores were significantly lower in the pregabalin group vs the placebo group on days 1-7 after hospitaldischarge, and the pregabalin group required less adjunctive opioid medication (Percocet) 1 week after hospital discharge (P<0.05). CONCLUSIONS: Perioperative administration of pregabalin did not improve pain or physical function at 6 weeks or 3 months after total hip arthroplasty. Perioperative administration of pregabalin decreased opioid consumption in hospital and reduced daily pain scores and adjunct opioid consumption for 1 week after discharge.Department of Anaesthesia at the University of Toronto (Merit Awards to H.C. and C.M.); Canadian Institute of Health Research Fellowship (to H.C.); Canada Research Chair in Health Psychology at York University (to J. Katz); PïŹzer Canada (physician-initiated peer-reviewed Neuropathic Pain Competition)

    New-Onset Atrial Fibrillation After PCI or CABG for Left Main Disease: The EXCEL Trial

    Get PDF
    Background: There is limited information on the incidence and prognostic impact of new-onset atrial fibrillation (NOAF) following percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) for left main coronary artery disease (LMCAD). Objectives: This study sought to determine the incidence of NOAF following PCI and CABG for LMCAD and its effect on 3-year cardiovascular outcomes. Methods: In the EXCEL (Evaluation of XIENCE Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) trial, 1,905 patients with LMCAD and low or intermediate SYNTAX scores were randomized to PCI with everolimus-eluting stents versus CABG. Outcomes were analyzed according to the development of NOAF during the initial hospitalization following revascularization. Results: Among 1,812 patients without atrial fibrillation on presentation, NOAF developed at a mean of 2.7 ± 2.5 days after revascularization in 162 patients (8.9%), including 161 of 893 (18.0%) CABG-treated patients and 1 of 919 (0.1%) PCI-treated patients (p < 0.0001). Older age, greater body mass index, and reduced left ventricular ejection fraction were independent predictors of NOAF in patients undergoing CABG. Patients with versus without NOAF had a significantly longer duration of hospitalization, were more likely to be discharged on anticoagulant therapy, and had an increased 30-day rate of Thrombolysis In Myocardial Infarction major or minor bleeding (14.2% vs. 5.5%; p < 0.0001). By multivariable analysis, NOAF after CABG was an independent predictor of 3-year stroke (6.6% vs. 2.4%; adjusted hazard ratio [HR]: 4.19; 95% confidence interval [CI]: 1.74 to 10.11; p = 0.001), death (11.4% vs. 4.3%; adjusted HR: 3.02; 95% CI: 1.60 to 5.70; p = 0.0006), and the primary composite endpoint of death, MI, or stroke (22.6% vs. 12.8%; adjusted HR: 2.13; 95% CI: 1.39 to 3.25; p = 0.0004). Conclusions: In patients with LMCAD undergoing revascularization in the EXCEL trial, NOAF was common after CABG but extremely rare after PCI. The development of NOAF was strongly associated with subsequent death and stroke in CABG-treated patients. Further studies are warranted to determine whether prophylactic strategies to prevent or treat atrial fibrillation may improve prognosis in patients with LMCAD who are undergoing CABG. (Evaluation of XIENCE Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularizatio
    • 

    corecore