34 research outputs found

    The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths

    Get PDF
    We investigate the potential to use concentrations and zoning patterns of phosphorus (P) in clinopyroxene as indicators of the rates of igneous and metasomatic processes, comparable to recent applications of P in olivine but applicable to more evolved rocks and lower temperatures of crystallization. Few high-P pyroxenes have been previously reported, and none have been analyzed in detail for the mechanism of P enrichment or the implications for mineral growth kinetics. Here, we report the discovery and characteristics of exotic phosphorus-rich secondary clinopyroxene in glassy pockets and veins in composite mantle xenoliths from the Cima Volcanic Field (California, USA) and the Middle Atlas Mountains (Morocco, West Africa). These glass-bearing xenoliths preserve evidence of melt infiltration events and the contrasting behavior of P in their pyroxene crystals constrains the different rates of reaction and extents of equilibration that characterized infiltration in each setting. We report optical petrography and chemical analysis of glasses and minerals for major elements by electron microprobe microanalyzer and trace elements by laser-ablation Inductively Coupled Plasma Mass Spectrometry. The Cima Volcanic Field specimen shows one end-member behavior, with unzoned P-rich clinopyroxene in a melt pocket. We attribute this occurrence to a slow crystallization process that occurred after the melt temperature reached near-equilibrium with the host rock and during which the P concentration in the melt was buffered by apatite saturation. In the Morocco xenolith, by contrast, clinopyroxene exhibits zonation with P increasing all the way to the rim, in contact with the glass. We ascribe this feature to a rapid growth process in which excess P was incorporated into the growing clinopyroxene from a diffusive boundary layer. We demonstrate quantitative agreement between the enrichment of P and other trace elements and their expected diffusion and partitioning behavior during rapid growth. We suggest that P has not been widely reported in clinopyroxene in large part because it has rarely been looked for and that its analysis offers considerable promise as a kinetic indicator both in xenoliths and volcanic rocks

    multi stage history of compound mantle xenoliths from western usa implications for metasomatic processes in the deep mantle

    Get PDF
    The compound mantle xenoliths from Cima Volcanic Field and Chino Valley (Western U.S.A.) represent outstanding candidates to illustrate the processes that occur prior to their delivery to the surface by alkali-basaltic volcanism. The xenoliths share characteristics like pyroxene zonation, amphibole breakdown and formation of glass and armalcolite. Their petrogenetic evolution involved partial melting of the silicate minerals, infiltration of reactive melts and dissociation of minerals en route to the surface, suggesting that these rocks followed multi-stage histories that initiated deep in the mantle (>1.0 GPa) and proceeded during a very short period of time

    Santorini volcano as a potential Martian analogue: The Balos Cove Basalts

    Get PDF
    The interpretation of geologic processes on Mars from sparse meteorite, remote sensing and rover data is influenced by knowledge gained from well-characterized terrestrial analogues. This calls for detailed study of candidate terrestrial analogues and comparison of their observable features to those encountered on the surface of Mars. We evaluated the mineralogical, geochemical, and physical properties of the Balos cove basalts (BCB) from the island of Santorini and compared them to Martian meteorites, Mars rover surface measurements, and other verified Martian analogues obtained from the International Space Analogue Rockstore (ISAR). Twenty rock samples were collected from the Balos cove area based on their freshness, integrity, and basaltic appearance in the field. Optical microscopy of BCB revealed a pilotaxitic to trachytic texture, with olivine and clinopyroxenephenocrysts in a fine groundmass of olivine, clinopyroxene, plagioclase, magnetite, and devitrified glass. All major minerals show normal zoning, including calcic plagioclase (An_(78–85) at the core and An_(60–76) at the rim), augite (En_(36-48)Wo_(41-44)Fs_(11–21)), and olivine (Fo_(74–88)). The dominant bands in the infrared-attenuated total reflectance (IR-ATR) spectra from BCB can be assigned to olivine (~875 cm−1), calcic plagioclase (~1130 cm^(−1)), and augite (~970 cm^(−1)). The whole-rock chemical compositions and mineralogy of the BCB are similar to published analyses of typical olivine-phyric shergottites and basalts and basaltic materials analyzed in Gusev and Gale craters on Mars. BCB porosity is in the range of 7–15% and is similar to the porosities of the ISAR samples. Although no terrestrial rock is ever a perfect match to Martian compositions, the differences in mineralogy and geochemistry between BCB and some classes of Martian samples are relatively subtle and the basalts of Santorini are as close a match as other accepted Mars basalt analogues. The Santorini site offers excellent field logistics that, together with the petrology of the outcrop, makes it a valuable locality for testing and calibration deployments, field training, and other activities related to current and future Mars exploration

    The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths

    Get PDF
    We investigate the potential to use concentrations and zoning patterns of phosphorus (P) in clinopyroxene as indicators of the rates of igneous and metasomatic processes, comparable to recent applications of P in olivine but applicable to more evolved rocks and lower temperatures of crystallization. Few high-P pyroxenes have been previously reported, and none have been analyzed in detail for the mechanism of P enrichment or the implications for mineral growth kinetics. Here, we report the discovery and characteristics of exotic phosphorus-rich secondary clinopyroxene in glassy pockets and veins in composite mantle xenoliths from the Cima Volcanic Field (California, USA) and the Middle Atlas Mountains (Morocco, West Africa). These glass-bearing xenoliths preserve evidence of melt infiltration events and the contrasting behavior of P in their pyroxene crystals constrains the different rates of reaction and extents of equilibration that characterized infiltration in each setting. We report optical petrography and chemical analysis of glasses and minerals for major elements by electron microprobe microanalyzer and trace elements by laser-ablation Inductively Coupled Plasma Mass Spectrometry. The Cima Volcanic Field specimen shows one end-member behavior, with unzoned P-rich clinopyroxene in a melt pocket. We attribute this occurrence to a slow crystallization process that occurred after the melt temperature reached near-equilibrium with the host rock and during which the P concentration in the melt was buffered by apatite saturation. In the Morocco xenolith, by contrast, clinopyroxene exhibits zonation with P increasing all the way to the rim, in contact with the glass. We ascribe this feature to a rapid growth process in which excess P was incorporated into the growing clinopyroxene from a diffusive boundary layer. We demonstrate quantitative agreement between the enrichment of P and other trace elements and their expected diffusion and partitioning behavior during rapid growth. We suggest that P has not been widely reported in clinopyroxene in large part because it has rarely been looked for and that its analysis offers considerable promise as a kinetic indicator both in xenoliths and volcanic rocks

    Continental rift and oceanic protoliths of mafic–ultramafic rocks from the Kechros Complex, NE Rhodope (Greece): implications from petrography, major and trace-element systematics, and MELTS modeling

    No full text
    The whole-rock chemistry of eclogites, partially amphibolitized eclogites, and dyke amphibolites from the metamorphic Kechros complex in the eastern Rhodope Mountains preserves evidence of the geodynamic framework for the origin of their protoliths. Major and trace-element concentrations define two distinct protolith groups for the eclogites. The low-Fe–Ti (LFT) eclogites have low-TiO_2 content (<0.67 wt%), negative high field strength element anomalies, and variable enrichments in large ion lithophile elements (LILE). The rare earth element (REE) patterns are characterized by strong light-REE (LREE) enrichment and heavy-REE (HREE) depletion. The high-Fe–Ti (HFT) eclogites have small to moderate LILE enrichment and lack Nb anomalies. The REE patterns of the HFT eclogites are characterized by LREE depletion and relatively flat MREE–HREE patterns. The rock compositions and petrographic features of the LFT eclogites resemble gabbros formed in a continental rift environment with minor to moderate contamination of a mantle-derived mafic magma by continental crust, whereas the HFT eclogites resemble mafic rocks formed in extensional oceanic environments. We interpret the HFT suite to represent a later stage in an evolution from continental rift to open ocean, following the origin of the LFT suite. Dyke amphibolite compositions, except for probable SiO_2 loss associated with metamorphic dehydration reactions, appear to represent liquid compositions quenched in conduits through the lower crust. MELTS modeling shows that dyke amphibolite compositions can be related to each other by fractional crystallization under strongly oxidizing conditions at ~0.5 GPa pressure, and all can be derived from a low-degree melt of modified fertile peridotite from around 1.7 GPa. Cumulates crystallized from the parental liquids of the amphibolites under oxidizing conditions may have yielded the protoliths of the HFT suite

    Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    No full text
    The Late Miocene (11.6–9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr–Nd–O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial ^(87)Sr/^(86)Sr = 0.70906 to 0.7106, ε_(Nd)(t) = − 5.9 to −  7.5 and δ^(18)Ο_(qtz) = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial ^(87)Sr/^(86)Sr = 0.711 to 0.7112, lower ε_(Nd)(t) = −  7.3 to − 8.3, and higher δ^(18)Ο_(qtz) = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO_2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO_2 ≥ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to match isotopic data) must have accompanied fractional crystallization of the major phases

    On the color and genesis of prase (Green quartz) and amethyst from the island of serifos, cyclades, Greece

    No full text
    The color of quartz and other minerals can be either caused by defects in the crystal structure or by finely dispersed inclusions of other minerals within the crystals. In order to investigate the mineral chemistry and genesis of the famous prase (green quartz) and amethyst association from Serifos Island, Greece, we used electron microprobe analyses and oxygen isotope measurements of quartz. We show that the color of these green quartz crystals is caused by small and acicular amphibole inclusions. Our data also shows that there are two generations of amphibole inclusions within the green quartz crystals, which indicate that the fluid, from which both amphiboles and quartz have crystallized, must have had a change in its chemical composition during the crystallization process. The electron microprobe data also suggests that traces of iron may be responsible for the amethyst coloration. Both quartz varieties are characterized by isotopic compositions that suggest mixing of magmatic and meteoric/marine fluids. The contribution of meteoric fluid is more significant in the final stages and reflects amethyst precipitation under more oxidizing conditions. © 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Strewn field, mineralogy, and petrology of Al Haggounia 001: A unique enstatite chondrite

    No full text
    International audienceIn this work, we investigate macroscopic characteristics, magnetic susceptibility, mineralogy, and mineral composition of Al Haggounia 001. The samples were collected during eight field missions in the period between 2015 and 2019. In the strewn field of about 65 km in length, the specimens are found either on the surface or shallowly buried in loose sediments, which rules out the previous suggestions that this meteorite is a fossil meteorite. Macroscopically, the samples exhibit three major lithologies with various colors, porosities, and distributions of oxidized veins. The data obtained using transmitted and reflected light microscopy, scanning electron microscopy, and electron microprobe analysis confirm the macroscopic observations and show a heterogenous distribution of silicates and metal sulfides. Al Haggounia 001 is composed of enstatite, plagioclase, kamacite, taenite, schreibersite, daubreelite, troilite, graphite, sinoite, and silica polymorphs. We identified a new type of chondrules that are flattened and composed of rods of albite and enstatite, as well as elongated nodules of metal and sulfides, in addition to compression fractures in the form of subparallel veinlets. These features presumably reflect the deformation caused by shock. The magnetic susceptibility of Al Haggounia 001 (4.39 ± 0.20) is much lower than that of usual EH (5.48 ± 0.16) and EL (5.46 ± 0.04) chondrites but is in the range of E finds (5.05 ± 0.43). The thermomagnetic and hysteresis measurements are controlled by type, size, distribution of metal‐sulfide nodules, arrangement of oxyhydroxide veins, and weathering. Al Haggounia 001 is an anomalous meteorite with a polymict nature. It records multiple events revealing its unique origin which expends the groups of enstatite chondrites and provides insights into the complex formation and evolution history of their parent body
    corecore