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ABSTRACT

We investigate the potential to use concentrations and zoning patterns of phosphorus 

(P) in clinopyroxene as indicators of the rates of igneous and metasomatic processes, 

comparable to recent applications of P in olivine but applicable to more evolved rocks 

and lower temperatures of crystallization. Few high-P pyroxenes have been previously 

reported, and none have been analyzed in detail for the mechanism of P enrichment or 

the implications for mineral growth kinetics. Here, we report the discovery and 

characteristics of exotic phosphorus-rich secondary clinopyroxene in glassy pockets 

and veins in composite mantle xenoliths from the Cima Volcanic Field (California, 

USA) and the Middle Atlas Mountains (Morocco, West Africa). These glass-bearing 

xenoliths preserve evidence of melt infiltration events and the contrasting behavior of 

P in their pyroxene crystals constrains the different rates of reaction and extents of 

equilibration that characterized infiltration in each setting. We report optical 

petrography and chemical analysis of glasses and minerals for major elements by 

electron microprobe microanalyzer and trace elements by laser-ablation Inductively 

Coupled Plasma Mass Spectrometry. The Cima Volcanic Field specimen shows one 

end-member behavior, with unzoned P-rich clinopyroxene in a melt pocket. We 

attribute this occurrence to a slow crystallization process that occurred after the melt 

temperature reached near-equilibrium with the host rock and during which the P 

concentration in the melt was buffered by apatite saturation. In the Morocco xenolith, 

by contrast, clinopyroxene exhibits zonation with P increasing all the way to the rim, 

in contact with the glass. We ascribe this feature to a rapid growth process in which 

excess P was incorporated into the growing clinopyroxene from a diffusive boundary 
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layer. We demonstrate quantitative agreement between the enrichment of P and other 

trace elements and their expected diffusion and partitioning behavior during rapid 

growth. We suggest that P has not been widely reported in clinopyroxene in large part 

because it has rarely been looked for and that its analysis offers considerable promise 

as a kinetic indicator both in xenoliths and volcanic rocks.

Keywords: phosphorus content; phosphorus-rich pyroxene; diffusive relaxation; 

mantle xenolith; metasomatism 

INTRODUCTION

Over the last decade or so, geochemists have increasingly sought to place robust 

constraints on the rates of magmatic processes (Demouchy et al., 2006, 2015; Peslier 

et al., 2008; Hilchie et al., 2014; Peslier and Bizimis, 2014; Warren and Hauri, 2014). 

One particularly promising element for preserving records of rate-dependent 

processes is phosphorus (P; note that we will not use the symbol P for pressure in this 

work, so “high-P” always means elevated phosphorus content rather than elevated 

pressure), a slowly-diffusing and moderately incompatible element (Tropper et al., 

2004; Spandler et al., 2007; Boesenberg et al., 2012; Schneider et al., 2013; Elardo 

and Shearer, 2014; Ennis and McSween, 2014). Phosphorus content in olivine 

captures mineral growth histories and is then difficult to modify, even at magmatic 

temperatures over timescales of hundreds or thousands of years (e.g., Boesenberg and 

Hewins, 2010; Foley et al., 2013). The P5+ ion can substitute for Si4+, with a variety of 

charge-compensating mechanisms, and substantial concentrations have been well-

documented in olivine from many rock types, including mantle-derived xenoliths, 

komatiites, basalts with or without alkaline affinities, andesites, syenites, dacites, 

troctolites, and various meteorite classes (Agrell et al., 1998; Milman-Barris et al., 

2008; Sakyi et al., 2012; Tschegg et al., 2010; Welsch et al., 2013, 2014, Welsch et al., 

2016; Maisonneuve et al., 2016). In principle, the crystal chemistry of pyroxene 

should allow a variety of substitution mechanisms to accommodate phosphorus. 

However, available data suggest that P is quite incompatible in clinopyroxene, with 

most experimental partition coefficient values around 0.025, and are even more 

incompatible (partition coefficients 3 to 9 times lower) in orthopyroxene (data 

retrieved from Geochemical Earth Reference Model-GERM; Adam and Green, 2006; 

Brunet and Chazot, 2001).



  

Phosphorus enrichment in igneous olivine has been widely reported in recent years 

and applied to the interpretation of mineral growth kinetics. Phosphorus-rich zones in 

olivine have generally been attributed to incorporation of P in excess of equilibrium 

partitioning during rapid growth, such that zoning patterns primarily record crystal 

growth rate variations (e.g., Toplis and Carroll, 1995; Milman-Barris et al., 2008; 

Shea et al., 2015; Baziotis et al., 2017a). Few other minerals have been examined for 

their P content or zoning patterns. In particular, there is minimal information in the 

literature about P-rich zones in pyroxenes — only six high-P pyroxenes (P2O5 > 0.5 

wt%) can be found in the worldwide GEOROC compilation (Sarbas and Nohl, 2008) 

and there are limited experiments on its incorporation (Boesenberg and Hewins, 

2010). Yet many of the processes that enrich olivine in P could also plausibly affect 

pyroxene, which can also grow rapidly in supersaturated melts and incorporate excess 

P due to its incompatibility and slow diffusion. No previous study has attempted to 

quantify the implications of the presence, concentration, or zoning of P in 

clinopyroxene.

In this study we consider the potential of P in clinopyroxene as a petrogenetic 

indicator and geospeedometer, based on two contrasting occurrences of high-P 

pyroxene in mantle xenoliths. First, we report the results of detailed micro-scale 

petrological and geochemical analyses on the constituent minerals and glass in one 

previously undescribed sample (Ci-1-105a) from the H. G. Wilshire collection of 

xenoliths from the Cima Volcanic Field (CVF - California, USA) and one recently 

collected xenolith (MA-1) from Morocco (Middle Atlas Mountains, Bou Ibalghatene). 

We used a range of complementary instruments — optical microscope, electron probe 

microanalyzer (EPMA) and laser-ablation Inductively Coupled Mass Spectrometry 

(LA-ICP-MS) — to characterize the texture and chemistry of the Moroccan host lava, 

the xenolith matrix minerals, and the various phases (glass and crystalline) in the melt 

pocket and veins. Spatially resolved analyses show that the exotic second-generation 

P-rich clinopyroxene grains found in glassy regions of the Cima Volcanic Field 

xenolith are homogeneous, whereas the Moroccan pyroxene is zoned in P. To 

interpret these observations, we first examine whether the P concentrations are 

anomalous given the overall budget of P in the melt pocket and veins and then 

consider the implications for incorporation mechanisms of P in pyroxene, for growth 

rates, and for timescales of melt infiltration events in the lithosphere. We illustrate 



  

that our two cases span a considerable range of timescales and suggest that 

investigation of similar occurrences in other settings will constrain their timescales of 

formation as well.

GEOLOGICAL SETTING AND SAMPLE DESCRIPTION

Geological Setting

Cima Volcanic Field 

The Cima Volcanic Field is located in the Mojave Desert, southeastern California, 

USA. The Cima Volcanic Field experienced activity from ~7.5 Ma to ~3 Ma, a hiatus, 

and then reactivation from ~1 Ma into the Holocene (Turrin et al., 1985; Nealey and 

Sheridan, 1989; Wells et al., 1991). It is one of many small and isolated late Cenozoic 

basaltic fields distributed across the southern Basin and Range province. Regional 

crustal extension of the Basin and Range (since about 12 Ma; Davis et al., 1993) has 

been accommodated in the crust by major range-bounding normal faults and 

Cordilleran metamorphic core complexes with synchronous felsic volcanism and in 

the mantle by lithospheric thinning associated with subsequent mafic volcanism. The 

Cima Volcanic Field is an alkaline basalt-dominated field, containing only 

trachybasalt (hawaiite) and basaltic trachyandesite (Wilshire et al., 1988, 1991; 

Mukasa and Wilshire, 1997). For more details on the Cima Volcanic Field and 

geological context for the broader area of the Mojave Desert, refer to Luffi et al. 

(2009) and Baziotis et al. (2017a).

Middle Atlas

The Moroccan xenolith is from a maar located in the Middle Atlas Mountains, Bou 

Ibalghatene area (31°9’48΄΄N, 5°03΄36΄΄W). The volcanism in the area follows the NE 

trend of the North Middle Atlas fault and has been associated with thinning of the 

continental lithosphere by transtensional tectonics. The volcanoes in the area are each 

monogenetic, single eruptions of alkaline lava (nephelinites, basanites or alkali 

basalts; El Azzuzi et al., 1999, 2010). For more details about the maar, refer to 

Raffone et al. (2009) and El Messbahi et al. (2014).

Sample Description - Mantle Xenoliths

Cima Volcanic Field xenolith suite

The Cima Volcanic Field has yielded a rich variety of xenoliths (Irving, 1980; Farmer 

et al., 1995), divided by Wilshire et al. (1991) and Wilshire and McGuire (1996) into 



  

three main groups: 1) “Cr-diopside” group (peridotite, websterite, phlogopite ± 

pargasite clinopyroxenite), 2) “low-Cr green-pyroxene” group (Mg-rich websterite, 

two-pyroxene gabbro, microgabbro) and 3) “Al-augite” group (Fe-rich websterite, 

clinopyroxenite, gabbro and microgabbro). There is also a fourth group, composite 

xenoliths composed of two or more of the previous lithologies or containing 

hornblendite ± plagioclase ± phlogopite veins up to 15 mm in width. Sample Ci-1-

105a from the Howard Wilshire collection archived at the Smithsonian Institution 

(NMNH 118016-118) is such a composite xenolith. It is amphibole-bearing, with 

clear alternating lherzolite and clinopyroxenite layers. It was selected for study on the 

basis of promise as a sample of preserved boundaries between mantle lithologies that 

partially melted in contact (Baziotis et al., 2017a). The host lava of the Cima xenolith 

is not preserved in our hand-specimen, but is presumed to be the typical trachybasalt 

of the Cima Volcanic Field. 

Moroccan Xenoliths

Several of the Middle Atlas maar outcrops contain ultramafic xenoliths with a 

variety of lithologies, including a full spectrum of fertility from harzburgites through 

spinel lherzolites and wehrlites to pyroxenites. Several mantle xenoliths, including 

MA-1, were collected during a field trip to the Middle Atlas organized in conjunction 

with the 6th Orogenic Lherzolite Conference in Marrakech in 2014. The criteria for the 

selection of the studied xenoliths were freshness and integrity of specimens and the 

presence of melt veins. The specimen described here, labeled MA-1, is a 

porphyroclastic spinel-bearing lherzolite with scarce amphibole (Mercier and Nicolas, 

1975); the host lava is preserved in a section prepared from a different xenolith, 

collected <10 m away, in the same flow.

ANALYTICAL METHODS

Scanning Electron Microscope (SEM)

We examined sample Ci-1-105a on the California Institute of Technology (Caltech) 

GPS Zeiss 1550VP field-emission scanning electron microscope, equipped with an 

angle-sensitive backscattered electron detector and a 150 mm2 active area Oxford X-

Max Si-drift-detector energy-dispersive X-ray spectrometer (EDS). Imaging, mapping, 

and semi-quantitative EDS analysis were conducted using the SmartSEM and AZtec 

software packages. Analyses used a 15 kV accelerating potential and a 120 μm field 

aperture in high-current mode (∼4 nA probe current), yielding imaging resolution 



  

better than 3 nm and an activation volume for EDS analysis ∼ 1 μm3. Maps are 

presented in qualitative mode, showing uncorrected intensity of the relevant X-ray 

counts at each pixel.

Major elements

Major element compositions of minerals were determined in polished thin sections 

using three electron microprobes. Both the JEOL JXA8900 Superprobe at the 

Agricultural University of Athens (Greece) and the CAMECA SX-100 at the 

University of Vienna Department of Lithospheric Research (Austria) are equipped 

with four wavelength-dispersive spectrometers (WDS) and one EDS. The JEOL 

JXA8530F field emission microprobe at the Institut für Mineralogie, University of 

Münster (Germany) has an additional WDS. All analyses were performed with an 

accelerating voltage of 15 kV. For minerals, a 20 nA focused beam current, 20 s 

counting time on peak position and 10 s for each background were used. Phosphorus 

concentrations in olivines and clinopyroxenes were then re-analyzed at 50 nA beam 

current with 20 s peak and 10 s background counting time. The detection limit for P 

with this protocol is 71 ppm (1σ). For glass analyses, a slightly defocused (5 μm 

diameter) beam and 10 s counting time were used. Natural mineral standards used 

were albite (Na, Si, Al), wollastonite (Ca), olivine (Mg), almandine (Fe), spessartine 

(Mn), orthoclase (K), rutile (Ti), chromite (Cr), Ni-oxide (Ni) and Durango apatite (P). 

Representative mineral compositions are given in Tables 1-3, while all data are given 

in the supplementary table S1. We see no evidence of interlaboratory bias between the 

three electron microprobes but we have not done a specific round-robin of replicate 

analyses to verify this. In any case, the conclusions of this study would not be affected 

by systematic differences between the three microprobes at the percent level.

Trace elements

Trace element abundance analyses were carried out at University of Münster on a 

Thermo Fisher Scientific Element 2 magnetic-sector ICP-MS coupled to a Photon 

Machines Analyte G2 Excimer laser system operating with ca. 5 J/cm2 laser fluence 

and a repetition rate of 6-10 Hz. We used a large-volume ablation cell with fast signal 

response and short wash-out times (< 1 s) that holds up to six conventional thin 

sections and additional reference materials. Prior to sample analyses, the system was 

tuned with NIST SRM 612 glass for high sensitivity, stability, and low oxide-

interference rates (232Th16O/232Th < 0.2%). Spot sizes for the mineral analysis were 



  

between 12 and 60 μm in diameter; in most cases 40 μm was selected as the best 

compromise between laser signal strength and spatial resolution. The signal ablation 

time was 40 seconds for the peak and 20 seconds for the background. Wash out time 

between individual spots was 10 seconds. NIST SRM 612 glass (Jochum et al., 2011) 

was used as an external standard and the BIR-1G glass (Jochum et al., 2005) as an 

unknown to monitor precision and accuracy; Si, Mg and Ca served as internal 

standards for olivine/orthopyroxene, spinel and clinopyroxene/amphibole, 

respectively. Five to ten sample measurements were always bracketed by three 

measurements of NIST SRM 612 glass and two measurements of BIR-IG glass. 

Representative trace element analyses are given in Table 4-6, while all data are given 

in Table S2. Finally, data for the two standard glasses (individual measurements, 

means, standard deviation, relative standard deviation, and detection limits) are given 

in Table S2.

PETROGRAPHY

Matrix

Ci-1-105a 

Sample Ci-1-105a is a multi-layered mantle xenolith containing alternating layers of 

porphyroclastic olivine clinopyroxenite and coarse-grained lherzolite (Fig. S1). The 

studied section is dominantly lherzolite, with a gradational and somewhat irregular 

transition to clinopyroxenite. The orthopyroxene modal abundance in lherzolite is low 

enough that some areas could be classified as wehrlite. The overall mineral 

assemblage includes olivine, clinopyroxene, orthopyroxene, spinel, amphibole and 

phlogopite. Small (<100 μm), interstitial, allotriomorphic spinel grains are widespread 

along grain boundaries. In several places, amphibole is rimmed by dark brown glass 

suggesting partial melting, perhaps upon decompression. A distinct dark-coloured 

zone, described in more detail below, contains melt veins that coalesce or accumulate 

to form melt pockets (Fig. 1). There is no evident geometrical relation between host 

fabrics and the vein population. The studied region is from an interior cut of the 

xenolith and is not in contact with the host lava.

MA-1 

Sample MA-1 is a medium- to coarse-grained porphyroclastic spinel lherzolite in 

contact with the host alkali basalt. The lherzolite is foliated and contains melt veins 



  

that are both parallel and oblique to the foliation. Olivine is the predominant mineral 

phase (58 vol.%), forming subhedral to anhedral grains (1-2.4 mm) with widespread 

strain features such as undulose extinction, kink bands and sub-grains (Fig. S2). 

Olivine neoblasts (400-1000 μm in diameter) with polygonal grain boundaries occur 

along olivine and orthopyroxene boundaries. Orthopyroxene (29 vol. %) grain sizes 

are bimodal, with porphyroclasts (> 3 mm in diameter) and smaller, elongated grains 

(0.5-2 mm in diameter). Both types are sub- to anhedral with well-developed single 

cleavage planes and clinopyroxene exsolution lamellae (Fig. S2,2). Clinopyroxene (11 

vol. %) with weak pale green pleochroism is found as interstitial, anhedral grains (0.5-

1.4 mm) (Fig. S2,2). Spinel (2 vol.%) is found as elongated interstitial grains (0.3-1.6 

mm) and as spongy corroded rims over spinel associated with glassy areas (Fig. 2b). 

Scarce, anhedral relics of brown pleochroic amphibole and bundles of platy 

phlogopite associated with spongy spinel are also present (Fig. 2a), surrounded by 

fine-grained aggregates of olivine + clinopyroxene + spinel ± glass.

Host basalt of MA-1

The host basalt displays a characteristic vitrophyric texture. The matrix is dominated 

by glass, phenocrystic clinopyroxene and olivine. Idiomorphic clinopyroxene 

phenocrysts usually display a characteristic sieve texture. Orthopyroxene xenocrysts 

are rimmed by coronas of clinopyroxene and olivine xenocrysts are characterized by 

skeletal rims, both indicating reaction of the xenocrysts with the lava host. Numerous 

olivine crystallites, along with minor plagioclase and spinel, are also scattered in glass. 

Scarce amygdules filled with calcite are present.

“Dark-coloured” areas 

Ci-1-105a

An irregularly-shaped (average ~2 mm wide) dark-coloured melt pocket is present 

between matrix olivine and clinopyroxene (Fig. 1). The melt pocket consists of 

olivine + glass (5-10 vol %) + plagioclase + spinel + clinopyroxene + apatite and is 

interpreted as a rapidly crystallized melt, suggested by the presence of glass and 

quench textures. In contact with glass, olivine shows an outer high-backscatter (Fe-

rich) rim, typically 5-10 μm wide. Plagioclase occurs as prismatic, un-oriented 

crystals associated with clinopyroxene. Spinel occurs as inclusions in the olivine or in 

association with plagioclase and glass, showing euhedral to anhedral shape. 



  

Clinopyroxene enclosed by melt within the pocket is euhedral to anhedral; larger 

euhedral grains have a high-backscatter rim 5-10 μm wide. Apatite occurs both as a 

large crystal (up to ~100 μm) near the rim of the pocket and as tiny dispersed crystals.

MA-1

Glass is found in several distinct features in MA-1: both in pockets around amphibole 

and in dark-coloured veins about ~100 μm wide on average. Some of these veins are 

parallel to layering, whereas another set clearly crosscuts the foliation (Fig. 2). 

Amphibole melt pocket: A melt pocket up to 1 mm across contains pleochroic brown 

amphibole relics (up to 250 μm wide) and is surrounded by secondary olivine + 

clinopyroxene + spinel + glass (Fig. 2). The entire pocket is included within a primary 

olivine grain in the lherzolite matrix. Amphibole is subhedral, with homogenous cores 

and backscatter-bright rims; epitaxial growth of secondary cpx is common around the 

amphibole rims. Olivine is present as scattered subhedral crystals (20-80 μm) within 

the pocket, with abundant spinel inclusions and backscatter-bright rims. 

Clinopyroxene (10-90 μm) with spinel inclusions forms subhedral crystals ether 

within the pocket or epitaxially grown on amphibole. Complex core-rim and 

hourglass zoning are commonly observed. Spinel, besides being a chadacryst in 

secondary olivine and clinopyroxene, is also present as small euhedral to subhedral 

crystals in the glass.

Parallel Melt Veins: The parallel melt veins are generally composed of olivine + 

clinopyroxene + plagioclase + spinel + phlogopite + glass and are usually well 

crystallized with minor interstitial glass, generally below 10 vol. % (Fig. 2). Iron-rich 

rims of the matrix olivines in contact with the parallel melt veins suggest reaction 

between matrix and vein. Olivine grains inside the parallel melt veins include both 

phenocrysts (usually idiomorphic with spinel and rare, rounded glassy inclusions) and 

xenocrysts (zoned, with skeletal rims suggesting disequilibrium). Clinopyroxene is 

abundant, both euhedral grains and spindly quench crystals. Occasionally, the larger 

clinopyroxene crystals display compositional zoning. Clinopyroxene also grows from 

matrix orthopyroxene along the boundaries of the parallel melt veins. Plagioclase 

occurs as prismatic, flow-oriented crystals parallel or sub-parallel to the melt vein 

elongation. Spinel is usually found as anhedral to subhedral grains with characteristic 



  

zonation towards Fe-rich rims. Phlogopite is quite rare and is found only along the 

boundary of the parallel melt veins, in close association with spinel and olivine.

Cross-cutting melt veins: Cross-cutting melt vein #1 is up to 200 μm wide in places 

(the widest vein in the studied specimen), and is oblique (~45˚) to the foliation. It is 

mainly composed of olivine + clinopyroxene + spinel + apatite + glass. The 

abundance of glass in this vein reaches up to 15 vol. % (i.e., higher than in the parallel 

melt veins). Olivine is usually present as euhedral crystals that often contain spinel or 

ilmenite inclusions. In rare cases, rounded glass inclusions in olivine were identified. 

Rare fragments of matrix olivine (xenocrysts) display skeletal, Fe-rich rims, much like 

in-place matrix olivine along the boundary of the melt veins. Clinopyroxene is present 

again both as euhedral and as quenched, dendritic crystals ≤10 μm wide. In addition, 

clinopyroxene forms rims on matrix orthopyroxene grains that contact the glass of the 

melt vein. Spinel, when not included in other phases, is found as both anhedral and 

euhedral grains associated with olivine and glass. Spinel in contact with glass is zoned, 

with spongy, Fe-rich rims. Apatite is found rarely as small (≤15 μm wide) subhedral 

crystals embedded in glass.

Cross-cutting melt veins #2 and #3 are two members of a separate set of melt 

veins oriented almost perpendicular to the foliation of the xenolith. The width of the 

glass-bearing portion of these veins rarely exceeds 100 μm, though they are bounded 

by additional rims of secondary cpx up to 10 μm wide wherever the veins cut through 

or abut matrix orthopyroxene. The veins are mainly composed of olivine + 

clinopyroxene + spinel + plagioclase + glass. Secondary olivine is present as euhedral 

to subhedral crystals, locally abundant in the marginal parts of the veins, and as high-

backscatter overgrowths on matrix olivine. Secondary olivine may contain rounded 

spinel and glass inclusions. Clinopyroxene forms anhedral dendritic crystals with 

distinct high-backscatter rims; their grain sizes decrease towards the center lines of 

the veins. Plagioclase is present as lath-shaped crystals, occupying the central part of 

the veins and as an interstitial phase. Interstitial glass forms about 15 vol. % of the 

veins and is intimately mixed with randomly-oriented plagioclase laths.



  

MINERAL CHEMISTRY
The major and trace element compositions of minerals within melt-related areas 

(veins and pockets) are presented in this section. Due to the small size of several 

grains, some of the mineral phases were difficult or impossible to analyze. Here we 

emphasize those results that indisputably correspond to single grain analyses and 

identify mixed analyses when necessary. 

Olivine

In Ci-1-105a, the melt pocket contains homogeneous olivines (Fo88.5) with P2O5 ~ 

0.08 wt%, richer in P than the matrix olivines (P2O5 in the range 0.02-0.06 wt% and 

Fo84-89). The Li concentrations vary from 4.03 to 5.49 ppm; B content is remarkably 

constant (1.39-1.56 ppm). Vanadium and Sc display variation within a fairly restricted 

range compared to the other studied samples, from 2.26 to 7.36 ppm and from 2.07 to 

6.30 ppm, respectively. The olivines have Ni content in the range 2140-2250 ppm and 

low to moderate (27-150 ppm) Cr abundances. The total REE concentrations range 

from 0.140 to 0.86 ppm.

Olivine in the amphibole melt pocket is magnesian (Fo91-94) with normal zoning. Up 

to 0.08 wt% P2O5 is present, with highest concentrations adjacent to the rims. 

Concentrations of NiO and Cr2O3 are variable, 0.18-0.37 wt% and 0.07-0.23 wt%, 

respectively. Due to the small size of secondary olivine in the amphibole melt pocket, 

no clean LA-ICP-MS spot could be obtained and the electron probe analyses may be 

contaminated, so these analyses will not be discussed further.

Olivine in the parallel melt veins displays normal (Fo86-92) zoning (scarce 

homogenous Fo91 crystals are also present), mostly low P2O5 concentration (up to 

0.07 wt%), and variable NiO (0.24-0.45 wt%) and Cr2O3 (0.01-0.20 wt%) contents. 

The Li concentrations vary from 2.08 to 3.58 ppm; B content spans from 0.88-6.65 

ppm. Vanadium (up to 2.76 ppm) and Sc (up to 3.49 ppm) are relatively enriched 

compared to the other studied samples. The total REE concentrations are variable, 

from 1.27 to 4.86 ppm. There is also a distinctive population of strongly zoned, 

anhedral olivine grains with core compositions matching the matrix olivine (Fo88-90, 

NiO 0.27-0.35 wt%, Cr2O3 0.01-0.04 wt%) surrounded by outer rims (Fo82-83) with up 



  

to 0.26 wt% P2O5. These are interpreted as matrix xenocrysts entrapped in the 

infiltrating melt, with reaction or overgrowth processes forming the rims. 

A large, euhedral olivine in cross-cutting melt vein #1 displays a homogenous (Fo83) 

core, overgrown by a less forsteritic rim (Fo81). The rim is enriched in P2O5 (up to 

0.17 wt%), in contrast with the homogenous core domain (0.04-0.07 wt% P2O5). NiO 

(0.10-0.19 wt%) and Cr2O3 (0.01-0.04 wt%) are low and relatively homogenous. The 

core displays low concentrations of Li (~1.45 ppm), V (~1 ppm), Sc (1.21 ppm), and 

total REE (1.183 ppm).

In cross-cutting melt vein #2, olivine displays a wide range in forsterite component, 

normally zoned from Fo91 to Fo82; Fo is correlated with large variations in NiO (0.41-

0.07 wt%) and Cr2O3 (0.02-0.13 wt%) contents. There are large variations in P2O5 

concentration, 0.003-0.78 wt%, but domains with P2O5 > 0.1 wt% are only found in 

more evolved zones (Fo82-85), whether in phenocrysts or at the outer rims of anhedral 

xenocrysts.

Clinopyroxene

In the melt pocket in Ci-1-105a, clinopyroxene is Al- and Ti-rich but projects into the 

Wo-En-Fs ternary at Wo44-50En36-46Fs10-17 (notably more Fe-rich than other 

clinopyroxene analyses; see Fig. 3a). The concentration of P2O5 (by EPMA) in the 

various clinopyroxene grains examined ranges from 0.11 to 0.68 wt%, but mapping 

shows that each grain is homogeneous in P2O5 content. The primitive-mantle 

normalized trace element patterns are similar to those observed at the rims of matrix 

clinopyroxene adjacent to the melt pocket; they are characterized by negative Ba, Pb, 

Sr–P, Zr–Hf, and Li anomalies and relatively flat patterns from Th to Pr (Fig. 4a). The 

chondrite-normalized rare earth element (REE) patterns are concave-down from light 

to middle REE and essentially flat in the heavy REE (Fig. 4c).

In MA-1, clinopyroxene in the amphibole melt pocket projects to Wo42-46En46-54Fs4-10 

(Fig. 3b) and is variable in TiO2 (0.15-2.45 wt%), Al2O3 (4.42-10.17 wt%) and Cr2O3 

(0.08-2.44 wt%) contents, with increasing Al2O3 and TiO2 towards the rim (Table 2). 

The concentration of P2O5 is relatively low (0.01-0.15 wt%). The normalized trace 

element patterns in the clinopyroxene core are depleted in large-ion lithophile 

elements (LILE) with negative Ba, Pb, Sr–P, Zr–Hf, Ti and V anomalies, but positive 



  

Li anomalies. Patterns are relatively flat from Gd to Lu (Fig. 5a). The patterns near 

the rims are similar except for distinctive enrichment in LILE. Secondary 

clinopyroxene cores in the amphibole melt pocket display a distinctive (Fig. 5) REE 

pattern: concave downwards in the LREE (La/SmN = 1.06-1.18), slight negative Eu 

anomaly (0.87-0.93), gently descending MREE to HREE (Dy/YbN= 1.24-1.29), and 

high total REE concentrations (815-870 ppm). On the other hand, the rims are more 

enriched in LREE (La/SmN= 2.59-4.60), may lack a Eu anomaly (0.91-1.01), show 

more fractionated MREE to HREE (Dy/YbN= 1.72-1.92), and overall have more 

variable total REE content (720-920 ppm). 

In parallel melt veins, clinopyroxene is notably less calcic (Wo36-42En51-57Fs5-8), with 

variable Al2O3 (2.46-8.58 wt%) and Cr2O3 (0.12-2.59 wt%) concentrations and 

notably lower TiO2 (0.22-1.15 wt%) than other secondary clinopyroxenes in the 

sample. The concentration of P2O5 is low, ≤ 0.08 wt%. The PM-normalized trace 

element patterns show positive Ba, Pr, Nd, Sm, and Li anomalies alongside negative 

Pb, Zr-Hf, Ti, and V anomalies and flat patterns from Gd-Yb. Rare earth element 

patterns have a monotonic negative slope from LREE to HREE (La/YbN=6.51) with a 

small negative Eu anomaly (Eu/Eu*= 0.77) and elevated total REE concentration 

(1590 ppm).

Clinopyroxene in cross-cutting melt vein #1 show substantial variation in FeO and 

MgO contents (Wo43-46En37-51Fs4-19), with normal core-rim zoning. Large variations 

are observed in TiO2 (0.20-7.19 wt%), Al2O3 (4.17-9.61 wt%) and Cr2O3 (up to 0.69 

wt%) contents (Table 2). There is a large range of P2O5 concentrations (0.03-1.18 

wt%), positively correlated with Al2O3 and TiO2 and showing maximum values 

adjacent to crystal rims. Trace element patterns are more enriched in LILE than in 

clinopyroxene from parallel melt veins, with negative Ta, Pb, Zr–Hf anomalies, 

positive Nb and La anomalies, and smoothly descending patterns from Nd to Sc. The 

REE pattern displays strongly fractionated LREE/HREE (La/Yb)N = 15.8, less 

fractionated MREE/HREE, and high REE concentrations (REE = 4950 ppm). 

In cross-cutting melt vein #2, secondary clinopyroxene (Wo38-43En50-57Fs5-10) displays 

more restricted ranges in FeO, MgO, TiO2 (0.14-2.12 wt%) and Al2O3 (2.01-7.58 

wt%) alongside higher and more variable Cr2O3 (0.05-1.78 wt%), compared to cross-



  

cutting melt vein #1. The content of P2O5 is negligible, with maximum values ~0.06 

wt%. 

Plagioclase

In Ci-1-105a, plagioclase composition covers the range An53-64Ab33-42Or3-5. In MA-1, 

plagioclase in cross-cutting melt vein #2 is variable in composition, An29-57Ab40-64Or2-

7, whereas plagioclase in parallel melt veins is restricted to the calcic end of this range 

(An44-57Ab42-53Or1-5).

Glass

In the melt pocket in Ci-1-105a, EPMA analyses on glass reveal a K2O-rich 

composition (7.01-7.86 wt%) with P2O5 content up to 1.23 wt%. Unfortunately, the 

glass areas between quench crystals are too small to obtain LA-ICP-MS analyses 

uncontaminated by adjacent phases, so the trace element budget in the glass is not 

known from this sample.

In MA-1, glasses in amphibole melt pocket are silica-undersaturated (Fig. 6), with low 

to intermediate SiO2 (48.1-55.9 wt%), moderate to high Na2O (5.81-9.00 wt%), and 

moderate to high K2O content (2.84-6.50 wt%). The range in P2O5 concentration is 

0.58-1.25 wt%. There is a positive correlation between MgO (0.85-2.41 wt%) and 

CaO (1.59-6.68 wt%), but these oxides are negatively correlated with Al2O3 (17.7-

20.4 wt%), total FeO (3.50-7.48 wt%), and TiO2 (1.48-2.18 wt%) (Fig. 7). Trace 

element patterns are concave-up across the LILE, with positive anomalies in Rb, Nb-

Ta, and Li alongside negative anomalies in Pb, Ti and Sc (Fig. 5). The REE pattern 

shows a descending slope from LREE to HREE (La/YbN=17.80), slight negative Eu 

anomaly (Eu/Eu*= 0.86) and total REE concentration of 1110 ppm (Fig. 5). 

Glasses in parallel melt veins are also silica-undersaturated (Fig. 6), with low to 

moderate SiO2 (45.7-55.8 wt%), moderate to high Na2O (4.50-8.06 wt%), and 

variable K2O (0.69-5.75 wt%). The concentration of P2O5 extends up to 1.05 wt%. 

The contents of CaO (4.69-9.44 wt%), FeOt (3.68-6.28 wt%), and TiO2 (0.49-2.21 

wt%) decrease with decreasing MgO (0.85-3.14 wt%), whereas Al2O3 (17.9-21.7 

wt%) and K2O increase (Fig. 7). Trace element patterns show positive anomalies in 

Rb, Nb-Ta, and Li alongside negative anomalies in Pb, Ti and Sc (Fig. 5b). The REE 



  

pattern is significantly fractionated LREE to HREE (La/YbN=28.9), lacks any Eu 

anomaly, and has high total REE concentration, 10300 ppm (Fig. 5d).

Compared to glass in the parallel melt veins, analyzed glass in cross-cutting melt vein 

#1 has higher SiO2 content (46.1-49.3 wt%), more variable Na2O content (1.23-8.15 

wt%), and systematically lower K2O (1.65-3.17 wt%) (Fig. 6). The concentraton of 

P2O5 is relatively high, ranging from 0.89-2.31 wt%. Plotted against the limited range 

of MgO (0.94-3.11 wt%), Al2O3 increases (16.3-19.6 wt%) as MgO decreases, 

whereas FeOt (6.96-11.5 wt%), CaO (4.55-10.7 wt%) and TiO2 (2.03-3.50 wt%) all 

decrease (Fig. 7). Concentrations of Na2O are too scattered to discern any trend. Trace 

element patterns are characterized by depleted LILE and positive anomalies in Th, 

Rb, Nb-Ta, and Li alongside negative anomalies in U, Pb, Ti and Sc (Fig. 5b). The 

REE pattern is even more fractionated overall than observed in the parallel melt veins 

(La/YbN=30.9), with no Eu anomaly and high total REE concentrations, 6570 ppm 

(Fig. 5d). 

Glass in cross-cutting melt vein #2, analyzed by electron microprobe only, is more 

evolved than glass from cross-cutting melt vein #1, with 50.2-58.6 wt% SiO2 (Fig. 6). 

There is a negative correlation between SiO2 and MgO (1.04-3.64 wt%) but a positive 

correlation between SiO2 and Al2O3. Contents of Na2O (0.33-7.41 wt%) are variable; 

K2O concentration (1.62-5.54 wt%) is somewhat less variable. Positive correlations 

are observed among MgO, CaO, FeOt, and TiO2 (Fig. 7). Concentrations of P2O5 vary 

across an order of magnitude (0.09-1.18 wt%).

Apatite

Three apatite grains were analyzed for trace elements in Ci-1-105a. The trace-element 

patterns are characteristic of the strongly fractionating crystal chemistry of apatite, 

with negative Nb, Zr and V-Sc anomalies relative to the primitive mantle and high Th 

and U abundances in the range of 1000× PM (Fig. 4). The REE yield extremely strong 

LREE enrichment [(La/Yb)N=95-127], slight negative Eu anomalies (Eu/Eu*=0.75-

0.80), moderately fractionated MREE [(Gd/Yb)N=4.88-5.06] and total REE 

concentrations in the range of 2960-3060 ppm (Fig. 4).

Spinel



  

In the melt pocket in Ci-1-105a, secondary spinel is uniform in composition with 

molar Al# = Al/(Al+Fe3++Cr) = 0.82 and Cr# = Cr/(Cr+Al) = 0.14. In MA-1, spinel in 

the amphibole melt pocket displays an intermediate Mg-spinel-chromite composition 

with Al# = 0.55-0.56 and Cr# 0.40-0.41. In parallel melt veins, spinel composition 

approaches the Mg-rich end-member, with high Al# = 0.65-0.80 and variable Cr# = 

0.16-0.31. Secondary spinel in cross-cutting melt vein #1 is Ti-rich, displaying an 

intermediate magnetite-ulvöspinel composition with homogenous Al# = 0.24-0.26 and 

more variable Cr# = 0.03-0.17. 

DISCUSSION

Phosphorus partitioning in clinopyroxene

Perhaps the most exceptional observation in both xenoliths is the presence of P-rich 

clinopyroxene. X-ray maps of with a high-resolution field-emission scanning electron 

microscope reveal no evidence, at the highest achievable magnification, of hotspots or 

P-rich inclusion phases. The P appears to be incorporated in the pyroxene structure 

itself (Figs. 9,10c).

We found 509 xenolith-hosted clinopyroxene analyses in the GEOROC 

database (Sarbas and Nohl, 2008); 81.7% (415 analyses) have <0.1 wt% P2O5; 49 

analyses have 0.1-0.2 wt% P2O5, 40 analyses have 0.2-0.3 wt% P2O5, and the 

maximum P2O5 is 0.66 wt%. In the Cima Volcanic Field case, we find clinopyroxene 

grains with unzoned P2O5 contents up to 0.68 wt%. In the Moroccan case, 

clinopyroxene in one of the studied cross-cutting melt veins has P2O5 content reaching 

~1.2 wt% at the rim. Note that glass adjacent to the clinopyroxene rims has ≤2.31 

wt% P2O5, insufficient to generate the measured P counts in the pyroxene, tens of m 

from the glass, by secondary fluorescence artifacts (Brunet and Chazot, 2001).

Reports of elevated P in pyroxene are exceedingly scarce. GEOROC (Sarbas 

and Nohl, 2008) includes only six other occurrences with P2O5 > 0.5 wt.% worldwide. 

These reports include convergent margin and intraplate tectonic settings, in 

nephelinite, basanite, and pyroxenite (e.g., Yurtmen, 2000; Solovova et al., 2005; Liu 

et al., 2010a,b). The P-rich pyroxenes in Ci-1-105a are close to the compositions 

reported in the groundmass of basanite (Yurtmen et al., 2000), with similar SiO2 and 

Al2O3, and slightly higher TiO2 contents. All the P-rich pyroxene analyses in MA-1 

with ≥1.0 wt% P2O5, however, have lower SiO2, higher Al2O3, and higher TiO2 



  

contents than previously reported high-P pyroxene. On the other hand, analysis points 

in MA-1 with ≤1.0 wt% P2O5 overlap the compositions of moderately P-bearing 

pyroxene from the database. 

As P-rich clinopyroxene is so rare, there has been little discussion of its origin 

and significance, in contrast to the extensive studies of P-rich olivine (e.g., Toplis et 

al., 1994; Milman-Barris et al., 2008; Mallmann et al., 2009; Boesenberg and Hewins, 

2010; Grant and Kohn, 2013; Shearer et al., 2013; Welsch et al., 2014; McCanta et al., 

2016; Baziotis et al., 2017a; Gordeychik et al., 2018). Here we consider how insights 

gained from the interpretation of P in olivine might apply to clinopyroxene.

Substitution mechanism

Dendritic pyroxene found in a natural iron-carbon alloy from Disko Island 

(Greenland) contains up to 2.6 wt% P2O5 (more commonly in the range 1-2 wt%; 

Goodrich, 1984). Extremely P-rich pyroxene (up to 30 wt% P2O5) was produced 

experimentally by Boesenberg and Hewins (2010), who suggested that the complexity 

of the substitution mechanism for P in the pyroxene structure may be the major reason 

that so few natural P-rich pyroxenes have been found. The substitution mechanisms 

are thought to involve P+5 on tetrahedral sites, compensated by some mix of trivalent 

ions and vacancies on tetrahedral sites or by coupled substitutions on octahedral sites 

(e.g., Boesenberg and Hewins, 2010).

The P contents of clinopyroxene in this study are plotted in Figure 8 versus Si 

atoms per formula unit (apfu) (Fig. 8a,c) and Ti/Al ratio (Fig. 8b,d). In Ci-1-105a, 

there is initially negative correlation between Si cations and P (correlation coefficient 

r = –0.50), giving way to constant Si (~1.6 apfu) in the upper range of P contents. 

This suggests that P readily substitutes for Si up to a certain concentration, beyond 

which other coupled substitutions are required. On the other hand, in MA-1, P and Si 

apfu are negatively correlated (r = –0.76) over the whole range of P concentrations 

(Fig. 8b). The P-rich pyroxene, when recast into a 10-component stoichiometry (Excel 

spreadsheet written by Michael Marks and modified by Paul Asimow), contains 

mostly ≤3% of the Ca-Tschermak (CaAlAlSiO6) component, because most of the Al3+ 

compensates for Ti substitution, shown by a 8-24% Ti-Tschermak (CaTiAl2O6) 

component (Table 2). Phosphorus content is positively correlated with Ti/Al (r = 0.63 

for MA-1 and r = 0.74 for Ci-1-105a), but only up to ~0.25 wt% P2O5, after which 



  

Ti/Al reaches a constant value (Fig. 8b,d). In the extremely reducing Disko Island 

setting, Goodrich (1984) showed that P-rich pyroxenes with high Ti/Al ratios might 

be associated with the presence of Ti3+ but the Cima Volcanic Field shows no 

evidence (such as phosphides, Fe-Cr alloys, etc.) for such reducing conditions (Fig. 

8b). There is some increase in Na apfu with increasing P in Ci-1-105a (r = 0.79), 

suggesting a NaMgPSiO6 component, however the MA-1 data show no such 

relationship (r = –0.15). In general, the substitution mechanism in clinopyroxene in 

the melt pocket in Ci-1-105a at the highest P end of the correlation is obscure, 

whereas in cross-cutting melt vein #1 in MA-1, substitution for Si with various 

charge-balancing mechanisms is viable over the full range of observed concentrations.

X-ray maps of P-rich clinopyroxene from melt pockets in Ci-1-105a show no 

zonation of P content (Fig. 9). This is somewhat surprising, as phenocrystic pyroxenes 

are commonly zoned, even in rapidly diffusing components such as Mg# and Mn, as 

well as the  slowly diffusing cations Ca, Cr, Ti, and Al (e.g., Cherniak and Dimanov, 

2010; Cherniak and Liang, 2012). We collected detailed EPMA line traverses across 

one clinopyroxene from the Ci-1-105a melt pocket, which show slight zonation in 

Mg, Ca and Al (Fig. 9i). Absent experimental work on the development or relaxation 

of P-zoning in pyroxene, we suggest that relaxation of either oscillatory or monotonic 

growth zoning in P is unlikely. The uniform enrichment observed therefore requires 

crystallization slow enough to avoid boundary enrichment and growth from a melt of 

constant P content. The constant P condition could result either from crystal growth in 

a large enough reservoir of uniform melt to avoid progressive P enrichment or growth 

of pyroxene after P concentration in the melt became buffered by apatite saturation. A 

large uniform reservoir is unlikely in an apparently isolated melt pocket and is 

inconsistent with the observed zoning in Li from adjacent, secondary olivines in the 

same melt pocket. Lithium does not encounter a buffering phase to limit its 

enrichment in residual liquid as crystallization proceeds. Hence, we favor apatite 

buffering to explain homogeneous P in clinopyroxene. 

X-ray maps of a P-rich pyroxene in cross-cutting melt vein #1 in MA-1 

confirm the inference from spot analyses that P content is zoned, becoming enriched 

toward the rim (Fig. 10). This resembles the normal zonation seen in both rapidly (Fe, 

Mg) and slowly (Al, Ti, Cr, Ca) diffusing components in fast-growing crystals 

(Cherniak and Liang, 2012; Elardo and Shearer, 2014). The P enrichment toward the 



  

rim might be explained by crystallization rapid enough to develop a P-rich boundary 

layer in front of the crystal facets as they advance into the melt; however, it might also 

reflect equilibrium growth of pyroxene in a restricted melt pool prior to melt 

saturation in apatite. These cases can be distinguished if equilibrium partition 

coefficients are known or estimated, by comparison to the apparent partition 

coefficient between the crystal rims and the quenched glass.

Proposed models for pyroxene growth

The mechanism of rapid crystal growth and formation of a boundary layer enriched in 

slowly-diffusing incompatible elements has been well-studied for olivine. Here we 

examine whether it can be extended to model zoned and unzoned clinopyroxene.

The diffusive snowplow model (Watson and Müller, 2009) predicts that the 

degree of disequilibrium in a trace element (i) is a function of its partition coefficient (

, where eq indicates equilibrium concentration), its diffusivity in the 𝐾𝑑,𝑖 ≡
𝐶𝑠𝑜𝑙𝑖𝑑

𝑖 (𝑒𝑞)

𝐶𝑚𝑒𝑙𝑡
𝑖

melt (Di), the crystal growth rate (G), and the thickness of the boundary layer (BL). If 

dynamical stirring maintains a fixed-width boundary layer, the steady state 

concentration of an element that arises at finite growth rate,  is given 𝐶𝑠𝑜𝑙𝑖𝑑
𝑖 (𝑑𝑖𝑠𝑒𝑞),

by:

. (1)𝐶𝑠𝑜𝑙𝑖𝑑
𝑖 (𝑑𝑖𝑠𝑒𝑞) =  

𝐶𝑠𝑜𝑙𝑖𝑑
𝑖 (𝑒𝑞)

1 ‒ (1 ‒ 𝐾𝑑,𝑖)
𝐺
𝐷𝑖

𝐵𝐿
 

For a given crystal that grew at a certain rate surrounded by a certain boundary layer, 

G and BL would be the same for all elements. This suggests that the degree of 

disequilibrium ( , which is 0 at equilibrium and tends to 1 for large 𝑄𝑖 ≡ 1 ‒
𝐶𝑠𝑜𝑙𝑖𝑑

𝑖 (𝑒𝑞)

𝐶𝑠𝑜𝑙𝑖𝑑
𝑖 (𝑑𝑖𝑠𝑒𝑞)

 

excess concentrations and towards –  for concentrations much less than equilibrium) ∞

for various elements in a crystal should scale as SPi = (1–Kd,i)/Di. Specifically, we 

expect Qi = . Note that Qi should be positive for incompatible elements and 𝐺 ∙ 𝐵𝐿 ∙ 𝑆𝑃𝑖

negative for compatible elements.

Zoning developed during crystal growth may be later modified by diffusive 

relaxation. Watson et al. (2015) inferred an upper limit of a months at magmatic 

temperature for preservation of ~5 μm wide P-rich bands in olivine. We will not 

explicitly model post-growth storage of clinopyroxene at magmatic temperatures here, 

but its effect is only to relax original gradients and so our estimated growth rates will 



  

be minima: storage between formation of the glass vein and eruption would imply 

more rapid growth during the formation of the vein.

Consider the observed concentrations of every analyzed trace element in 

clinopyroxene rims and adjacent glass in xenolith MA-1 from Morocco. Given an 

estimate of the equilibrium Kd,i for each element, the glass analysis allows us to 

estimate  and then, with the analysis of the crystal rim, to 𝐶𝑠𝑜𝑙𝑖𝑑
𝑖 (𝑒𝑞) =  𝐾𝑑,𝑖𝐶

𝑚𝑒𝑙𝑡
𝑖

calculate Qi. We compiled a set of partition coefficients appropriate for clinopyroxene 

in alkali basalt (Table 7) and another set appropriate for clinopyroxene in basaltic 

andesite (Table 7); these should provide reasonable estimates of the equilibrium 

partition coefficients likely to apply to the melt veins in our xenoliths. Next, we 

compiled estimates of diffusivity Di of each trace element in the melt at 1250 °C (Li, 

Ti, and Pb from Zhang et al., 2010; P from Watson et al. 2015; other elements from 

Holycross and Watson, 2016; for Tm we averaged the coefficients of adjacent 

elements Er and Yb). We can then calculate the snowplow parameter (1–Kd,i)/Di for 

each element for clinopyroxene growing into alkali basalt or basaltic andesite melt.

The results of this exercise (Figure 11) show, first, remarkably clear positive 

correlation between and (1–Kd,i)/Di for both cross-cutting melt vein #1 and 𝑄𝑖

amphibole melt pocket cases, whichever set of partition coefficients are used. This 

implies that the dynamically stirred diffusive snowplow model is helpful for analysing 

the disequilibrium growth of the pyroxenes in these two settings. On the other hand, 

the parallel melt vein case is scattered. In fact, in the parallel melt veins the 

clinopyroxene is low in P2O5 (≤ 0.08 wt%) and shows no evidence of rapid crystal 

growth (crystal shapes are equant) or boundary enrichment, so failure to fit the 

snowplow model should be expected. The absence of simple positive correlation for 

parallel melt veins demonstrates that the correlation in the other cases is significant 

and not a tautological byproduct of having Kd,i in both ordinate and abscissa). Second, 

for both cross-cutting melt vein #1 and amphibole melt pocket, the data can be 

reasonably well-fit with straight lines. Their slopes, according to equation (1), imply 

the following values of  (in m2/s, with uncertainties from the linear 𝐺 ∙ 𝐵𝐿
regression):1.7±0.5 × 10-12 (cross-cutting melt vein, basaltic andesite model), 3.5±0.6 

× 10-12 (cross-cutting melt vein, alkali basalt model), 4.5±0.7 × 10-12 (amphibole melt 

pocket, basaltic andesite model) and 5.3±0.7 × 10-12 (amphibole melt pocket, alkali 

basalt model). For a BL of order 100 m (Watson and Müller, 2009), the implied 



  

growth rates (in m/s) for the same four cases are 1.7±0.4 × 10–8, 3.6±0.6 × 10–8, 

4.5±0.7 × 10–8, and 5.3±0.7 × 10–8, respectively. For typical zoned clinopyroxene 

grains with 50 m long axes, we then estimate crystal growth times (in seconds) for 

the same four cases as 3000±800, 1400±200, 1100±150, and 900±100. MELTS 

calculations show that clinopyroxene grows within a ~100 °C segment of the liquid 

line of descent, such that these growth time estimates correspond to a cooling rate 

during that interval of ~0.1 °C/s (i.e., ~102 °C/hr). Smaller estimates of BL correspond 

to faster growth rates and shorter growth times. 

Petrogenetic history of the glassy regions

Our data suggest subtly different petrogenetic histories for the two xenoliths. Sample 

Ci-1-105a from the Cima Volcanic Field experienced the following stages: C1) melt 

intrusion and aggregation into pockets, C2) rapid initial cooling to near-equilibrium 

with the host, accompanied by olivine crystallization and reaction with matrix 

minerals, C3) slower crystallization in the sequence of Ol → Ap → Cpx → Pl → Fe-

Ox and C4) quench of glass. On the other hand, MA-1 from Morocco shows evidence 

of: M1) melt intrusion, M2) amphibole melting, M3) reaction with matrix minerals, 

M4) rapid crystallization of minerals through the sequence Ol → Cpx → Pl → Ap → 

Fe-Ox and M5) quench of glass. Stages M3 and M4 may have been simultaneous and 

coupled by energy conservation constraints (Baziotis et al., 2017a). The quench may 

have affected different parts of the melt pocket or melt veins at different times and 

temperatures, helping to explain the diversity of observed glass compositions. 

Stage M1, melt intrusion in MA-1, is indicated by the planar shape of some 

glassy regions and by the cross-cutting relation between glassy veins and the matrix 

fabric. Neither of these textural arguments applies to Ci-1-105a. However, both 

samples show evidence of reaction between the melt and matrix minerals, suggesting 

that the melts parental to the glasses were exotic to both host xenoliths rather than 

locally generated by partial melting. The co-existence of parallel and cross-cutting 

melt veins may indicate more than one generation of melt intrusion in MA-1. 

Amphibole melting, stage M2, is indicated by corroded rims in contact with 

melt (now glass) that crystallized secondary olivine, pyroxene and Fe-Ti oxides. The 

amphibole melting may have accompanied decompression during entrainment and 

eruption in the host lava (in which case it could be temporally and causally unrelated 



  

to the melt veins), or it may have been triggered by intrusion of the exogenous melt at 

stage M1. 

Rapid cooling (stages C2 and M4) is suggested by the observed zoning in 

olivine (Baziotis et al., 2017a) and clinopyroxene. Slowly-diffusing P and rapidly-

diffusing Li distributions yield upper and lower limits on the growth rate of secondary 

crystals. Early-crystallizing olivine grew rapidly enough to cause boundary layer 

enrichment of sluggish P but not so fast as to over-enrich other elements. This has 

been observed in P-rich olivines in melt veins from other Cima Volcanic Field 

xenoliths (Baziotis et al., 2017a) and in olivines from Moroccan xenoliths. The 

clinopyroxene in the melt pocket in Ci-1-105a, both neoblasts and reaction rims, 

formed after olivine, under slow enough growth conditions that P remained 

homogeneous (Fig. 9i,j). However, the preservation of Li zoning in olivine (Baziotis 

et al., 2017a), given the high diffusivity of Li (Qian et al., 2010), shows both that 

clinopyroxene growth cannot have been slow and that a limited amount of time passed 

between clinopyroxene growth and quench of the system. In the case of the Moroccan 

xenolith, at least the later stages of clinopyroxene growth were rapid enough to cause 

a diffusive boundary layer pileup effect and excess P incorporation near the pyroxene 

rim; the pyroxene cores may have grown more slowly (Fig. 10).

The different placement of the onset of apatite crystallization in the two 

studied cases is motivated both by the chemical argument about P zoning and by 

textural criteria. The absence of apatite inclusions in olivine rims places the onset of 

apatite crystallization after the bulk of olivine growth in both xenoliths. In MA-1, 

plagioclase shows evidence of flow alignment along the long direction of the melt 

veins, whereas apatite lacks a shape-preferred orientation, suggesting apatite growth 

at a later stage than plagioclase. In contrast, in Ci-1-105a, plagioclase and apatite in 

the melt pocket are both randomly oriented. The minor negative Eu anomalies 

(Eu/Eu*=0.75-0.80) observed in large apatites in Ci-1-105a may be inherited from the 

parental melt, but they may also indicate some early plagioclase fractionation 

preceding apatite growth.

Evolution of glass compositions

The simplest interpretation of the presence of variable glass compositions with the 

melt pocket in Ci-1-105a and within individual melt veins in MA-1 is that different 

zones quenched to glass at different times during the evolution of the melt pocket or 



  

veins. There are other plausible causes, including spatial inhomogeneity of 

simultaneously quenched melt compositions, variable alteration after quench, multiple 

generations of intrusion, etc. However, here we test the simple assumption that the 

glass samples progressive magmatic evolution in each pocket or vein. In this case, it is 

appropriate to compare the suite of glass analyses to models of processes such as 

simple fractional crystallization and assimilation coupled to fractional crystallization. 

We used the alphaMELTS interface to the MELTS model (http://magmasource. 

caltech.edu) to track both major and trace elements (Ghiorso and Sack, 1995; Asimow 

and Ghiorso, 1998; Asimow, 1999; Ghiorso et al., 2002; Asimow et al., 2001, 2004; 

Smith and Asimow, 2005). In this approach, one most often tests magmatic evolution 

from the most primitive (highest MgO) analysis, assessing whether its liquid line of 

descent passes through the more evolved compositions. We did not attempt to model 

the melt pocket in Ci-1-105a on the basis of only four, possibly contaminated, glass 

analyses. Instead we focus on the glass-bearing regions of Moroccan xenolith MA-1.

 The one primitive analysis point with 6.0 wt% MgO was tested first, but it 

appears to be impossible for all the glasses to have a common parentage (Figs. S3,S4). 

Throughout a considerable parameter space of pressure, oxygen fugacity, and water 

content, none of the liquid lines of descent for fractional crystallization provide a 

satisfactory fit to any of the glass groups. The differences are well outside the range of 

analytical error: fitting CaO would require displacing the onset of clinopyroxene 

fractionation by about 2 wt% MgO, whereas fitting TiO2 would require suppressing 

Fe-Ti oxide fractionation by 2.5 wt% MgO. The inability of fractional crystallization 

to fit the data is clear in a SiO2 vs. Na2O+K2O plot (Fig. S3). Because the starting 

glass is alkalic (a foidite), its liquid line of descent experiences rapid alkali 

enrichment unlike the trends in the data. We are forced to reject the notion that the 

entire glass population can be modeled as a fractional crystallization trend. Given the 

petrographic evidence of reaction with matrix minerals, this conclusion is not 

surprising.

We next considered, fractional crystallization beginning at different 

compositions for each subgroup of glass analyses (parallel melt veins, cross-cutting 

melt veins) to see whether any of these subgroups lie on their own fractional 

crystallization trends. Alkalis in the cross-cutting melt vein glasses are uncorrelated 

with SiO2 (Fig. 6), a behavior that does not arise in fractional crystallization models, 

so we abandoned this model for the cross-cutting melt vein glasses. On the other 



  

hand, the parallel melt vein population shows more promise as a fractional 

crystallization trend. We selected the most primitive analysis in a parallel melt vein 

(MgO = 3.14 wt%) and examined its liquid line of descent in 1 °C steps over a wide 

range of pressure (1 to 8 kb kbar), fO2 (QFM –1 to +1) and H2O content in the starting 

liquid (0.1 to 2.0 wt%). The conditions that best-fit the suite of parallel melt vein 

glasses were 5 kbar, QFM, and 2 wt% H2O (Fig. 7). This model fits the inflections in 

the FeOt and Al2O3 trends against MgO. It is plausible, therefore, that the parallel 

melt veins were injected as liquid and underwent effectively closed-system fractional 

crystallization at the identified conditions, quenching to glass at different temperatures 

and degrees of evolution and thereby preserving the differentiation history of the vein.

Glass analyses from the three different cross-cutting melt veins studied do not 

appear to be petrogenetically related. However, the numerous analyses of glass in 

cross-cutting melt vein #1 do show well-defined correlations of most elements versus 

MgO content [Correlation coefficients r for the oxides against MgO are: TiO2 0.56, 

FeOt 0.28, CaO 0.68, Al2O3 –0.75, K2O –0.64, and P2O5 –0.40] usually a prerequisite 

for recognizing any simple petrogenetic evolution. However, Na2O contents are 

scattered (r for MgO-Na2O regression is –0.37), from low values <1% to extremely 

high values >8%. No single model will be able to relate these compositions to one 

another unless there were good reason to neglect Na2O. Although there is good 

correlation among other elements, MELTS modeling shows that the trend is not 

parallel to the fractional crystallization trend in SiO2 vs. MgO or in TiO2 vs. MgO. 

We examined a number of assimilation-fractional crystallization scenarios involving 

the matrix minerals (olivine, orthopyroxene or both) found along the melt vein 

boundaries. Despite examining isothermal models, isobaric cooling models, and 

isenthalpic models, we found no scenario that satisfactorily matches the major 

element correlations in cross-cutting melt vein #1. Together with the scattered Na2O, 

we are left with the conclusion that disequilibrium processes were likely involved, and 

that an equilibrium code like MELTS is unable to extract the meaning of the 

compositional variation among the glass analyses from cross-cutting melt vein #1.

Incompatible element zonation and crystal shape as complementary kinetic tools

Rates of crystal growth and hence of cooling of melts to form igneous rocks are often 

inferred from crystal morphology, both crystal size distributions (Cashman and Ferry, 

1988; Marsh, 1988; Higgins, 2000; Morgan and Jerram, 2006) and crystal shapes, 



  

particularly plagioclase (Cabane et al., 2005; Pupier et al., 2008) and olivine (Helz, 

1987; Faure et al., 2003; Welsch et al., 2013, 2014; Shea et al., 2015). A few studies 

have examined the shapes of pyroxene crystals in nature (Baziotis et al., 2017b) or 

experimentally quantified the rates needed to obtain hopper, dendritic, and spinifex 

morphologies (cooling rates >10–7 cm/s, Kouchi et al., 1983; Mollo et al., 2010). 

Recent experiments by Welsch et al. (2016) suggest that clinopyroxene growth rate is 

extraordinarily sensitive to degree of undercooling, increasing by three orders of 

magnitude to values approaching 10–6 m/s between 45 °C and 55 ºC below the 

liquidus In the two xenolith cases studied, both secondary olivine and pyroxene 

display well-developed, non-dendritic crystal faces. On the basis of morphology 

alone, the interpretation is ambiguous: the shapes reflect a final stage of growth 

slower than that necessary to form complex shapes but they cannot rule out an earlier 

rapid dendritic phase that later filled in (Welsch et al., 2014).

Elemental concentrations and distributions in minerals offer another set of 

tools, with sensitivity to different timescales compared to morphological indicators. 

Olivine in particular has been widely used in recent years as a tracer of cooling rates, 

defining lower and upper limits in the range of a few to several °C/h. Enrichment of P 

in olivine above concentrations expected for equilibrium partitioning with coexisting 

glass suggests growth fast enough to develop a diffusive boundary layer in the melt 

adjacent to the moving crystal interface (e.g., Milman-Barris et al., 2008; Watson et 

al., 2015; Baziotis et al., 2017a). By contrast, preservation of such zoning for rapidly 

diffusing elements offers complementary bounds on storage times after crystal growth 

(Watson et al., 2015). Finely structured oscillatory zones of P enrichment often 

preserve evidence of rapid initial growth phases even when the outer shapes of the 

crystals show evidence only of a slower final growth phase.

Pyroxene is the second most abundant silicate mineral group in the Earth’s 

upper mantle and is also abundant in mafic to intermediate igneous rocks, including 

many that are olivine-free. If pyroxene records rate-dependent information in 

concentration and zoning profiles of P, then it is important to dedicate instrument time 

to high-precision analyses of this element and to calibrate the interpretation of such 

analyses. However, the experimental data on equilibrium partitioning are scarcely 

adequate to characterize the range of behavior, given the complexity of pyroxene 

crystal chemistry and the wide range of melt compositions in which pyroxenes occur.



  

Although the two cases reported in this work are only the 7th and 8th localities 

in the world known to have high-phosphorus pyroxenes, we think it likely that the 

situation is analogous to that of P-rich olivine a decade ago. Phosphorus in 

clinopyroxene has not received much attention from scientists and it requires high 

current and long counting times to quantify precisely. Enhanced P content may be 

restricted to zones only ~1 μm wide and so may require mapping at high spatial 

resolution. A sound general approach to searching for and then quantifying the 

presence of minor elements calls for a hierarchical approach of survey measurements 

followed by re-analysis of interesting grains and zones. The precise determination of, 

e.g., P zoning at 1 μm scale by EPMA requires beam current of at least 50 nA and 

counting times more than 20-30 s for the peak. This time-consuming protocol is 

nevertheless effective and practical and offers phosphorus detection limits lower than 

100 ppm (e.g., 71 ppm for the olivine analyses in Baziotis et al., 2017a).

CONCLUSIONS

Analysis of glass and secondary minerals in glass-bearing regions of mantle xenoliths 

of the Cima Volcanic Field and the Atlas Mountains revealed two varieties of exotic, 

phosphorus-rich clinopyroxene. Considering these crystals in the context of growth 

processes and kinetic phenomena leads to a number of inferences and conclusions 

about cooling rates and vein-host reactions. The xenolith glasses are the product of 

rapidly crystallized melt, accompanied in some cases by assimilation of host minerals. 

The unzoned P-rich clinopyroxene (P2O5 ~ 0.6 wt%) in a glassy pocket in a Cima 

Volcanic Field xenolith implies slow enough crystallization to avoid boundary 

enrichment and growth of clinopyroxene after P and volatile concentrations in the 

melt (perhaps only within the boundary layer around the growing crystals) became 

buffered by apatite saturation. In contrast, one cross-cutting glassy vein in the 

Moroccan xenolith hosts pyroxene with zoning in P2O5 extending up to 1.2 wt% at the 

outer rim. We attribute this to an accelerating rate of crystal growth, with onset of a 

diffusive boundary layer pileup effect and excess P incorporation near the pyroxene 

rim. These examples offer a preview of the potential application of P distribution in 

clinopyroxene as a geospeedometer in igneous rocks.
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Figure Captions

Figure 1. Back-scattered electron images of Ci-1-105a. (a) Typical melt pocket 
surrounded by matrix olivine, clinopyroxene and orthopyroxene. Large apatite grains 
(white) have concave boundaries suggesting partial resorption. (b) Enlarged view 
emphasizing Fe-enrichment at rims (lighter grey colour in back-scattered electron 
image) of olivine and cpx. At left, two P-rich clinopyroxene (P-Cpx) grains are 
indicated. (c) Part of the crystallized assemblage of the melt pocket composed of 
plagioclase (Pl), P-rich clinopyroxene, spinel, glass and quench crystals. (d) High-
magnification view of quench texture in melt pocket, emphasizing the difficulty of 
obtaining glass analyses uncontaminated by surrounding phases in this specimen. 
Abbreviations: Ol: olivine; Cpx: clinopyroxene; P-Cpx: phosphorus-rich 
clinopyroxene; Pl: plagioclase; Ap: apatite.

Figure 2. (a-c) Optical microscope images of matrix minerals from the MA-1 xenolith 
of Morocco. (d-f) Back-scattered electron images of (d) matrix and (e, f) melt vein 
minerals. Abbreviations: Ol: olivine; Cpx: clinopyroxene; Opx: orthopyroxene; Spl: 
spinel; Pl: plagioclase; Amp: amphibole; Phl: phlogopite; Gl: glass; Mp: melt 
pocket; Mv: melt vein.

Figure 3. Pyroxene compositional range projected into the Di-Hd-En-Fs ternary. 
Analyses range from augite to diopside while covering a significant range in Fe 
content (squares: Ci-1-105a; triangles: MA1).

Figure 4. Trace element patterns (a,b) and rare earth elements (c,d) for sample Ci-1-
105a. The samples are normalized to primitive mantle (PM) for (a) clinopyroxene, 
and (b) apatite, and to CI chondrite meteorite for (c) clinopyroxene and (d) apatite. 
Abbreviations: Cpx: clinopyroxene; Ap: apatite. The normalisation values for 
primitive mantle (PM) from Sun and McDonough (1989) and for C1 chondrite are 
from McDonough and Sun (1995).

Figure 5. Trace element patterns (a,b) and rare earth elements (c,d) for sample MA-1 
and basalt from MA-2. The samples are normalized as in figure 4.

Figure 6. Total-alkali Silica (TAS) diagram including glasses from the melt veins, 
amphibole-bearing melt pocket and preserved basalt of sample MA-1. Abbreviations: 
CMV1: cross-cutting melt vein #1; CMV2: cross-cutting melt vein #2; AMP: 
amphibole melt pocket; PMV: parallel melt vein.

Figure 7. MgO (in wt%) variation diagrams for major oxides (in wt%) for glass 
analyses in sample MA-1. Abbreviations as in figure 6.

Figure 8. Scatter plots of individual EPMA analysis spots in clinopyroxene, 
comparing P5+ to (a,c) Si4+ and (b,d) Ti/Al for sample Ci-1-105a (a,b) and MA-1 
(c,d). Furthermore, there are enough counts to get ~1% relative precision just from 
counting statistics except on all the points with ≥0.02 apfu P. However, the random 
errors are smaller than the sizes of the symbols thus we choose to eliminate them from 
the figures.  

Figure 9. Qualitative X-ray maps (a-d) of P-rich clinopyroxenes, outlined in white, 
from sample Ci-1-105a. The numbers on the P maps indicate P2O5 wt% from EPMA 
spot analyses.



  

Figure 9. continued. High resolution BSE image (e) and qualitative X-ray maps (f-i) 
showing P-rich clinopyroxenes in melt pocket from Ci-1-105a. In (j, k) two rim-rim 
EPMA signal profiles on P-rich clinopyroxenes designated in (h). Both profiles 
suggest homogeneous P content in both crystals.

Figure 10. (a) P-rich clinopyroxene in melt (now glassy) vein associated with 
secondary olivine. (b) Compositional rim-rim profile of the clinopyroxene indicated in 
(a). (c) Qualitative X-ray maps of P-rich clinopyroxene for Al, Ti, Ca, Mg, Na and P. 
The P X-ray map suggests an extended low-P core, surrounded by high-P toward the 
rim.

Figure 11. Assessments of disequilibrium between clinopyroxene and glass using the 
suite of analyzed trace elements for the MA-1 xenolith of Morocco. Predicted 
concentrations in clinopyroxene computed from coexisting glass analyses and 
published partition coefficients relative to measured clinopyroxenes are plotted using 
a snowplow model for melt composition of alkali-basalt (a) and basaltic-andesite (b). 
The two adopted sets of partition coefficients of clinopyroxene/melt are listed in Table 
7. The snowplow parameter (SP_i) is defined as (1–Kd,i)/Di., where Kd,i is the partition 

coefficient ( ; i:refers to a particular trace element and (eq) indicates an 𝐾𝑑,𝑖 ≡
𝐶𝑠𝑜𝑙𝑖𝑑

𝑖 (𝑒𝑞)

𝐶𝑚𝑒𝑙𝑡
𝑖

equilibrium concentration) and Di corresponds to the diffusivity in the melt.

Appendix

Figure S6. Sample Ci-1-105a. Lithologic boundaries are emphasized in the hand 
sample photograph and the location of the polished section is indicated by the white 
rectangle. The dark melt vein and melt pocket are indicated on the bottom most 
polished thin section mosaic.

Figure S7. Sample MA-1. The analysed matrix and melt vein areas are indicated by 
rectangles defining the locations of the thin sections shown in figure 2. 

Figure S3. Total-alkali Silica (TAS) diagram doped with MELTS models at variable 
conditions (pressures 1, 33, 8 and 2 kbar; H2O 0.1, 0.5 and 1.0 wt%; QFM -1 to +1). 
Abbreviations of glasses as in figure 6.

Figure S4. MgO (in wt%) variation diagrams for major oxides (in wt%) for glass 
analyses in sample MA-1 doped with MELTS models (as in figure S3). Abbreviations 
as in figure 6.
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Table 1: Average major-element composition (wt%) of primary and secondary phases determined by EPMA for sample Ci-1-105a.
 ML Matrix MP MP Matrix MP Matrix
 Ol Ol Gl Cpx Cpx Pl Spl
 Mean SD Mean SD  Mean SD  Mean SD Mean SD  Mean SD  Mean SD
SiO2 40.5 0.45 40.1 0.23 SiO2 49.6 2.75 SiO2 42.8 2.56 47.2 1.16 SiO2 52.9 1.35 SiO2 0.07 0.00
TiO2 0.01 0.01 TiO2 2.79 0.84 TiO2 6.50 1.66 2.27 0.29 TiO2 0.31 0.10 TiO2 0.87 0.01
Al2O3 0.04 0.02 0.02 0.01 Al2O3 18.7 3.21 Al2O3 9.22 2.33 8.26 1.33 Al2O3 28.7 1.08 Al2O3 51.6 0.12
Cr2O3 0.01 0.02 Cr2O3 Cr2O3 0.23 0.37 0.96 0.20 FeO 0.60 0.07 Cr2O3 12.2 0.33
FeO 12.1 2.25 14.0 1.14 FeO 6.48 0.96 FeO 7.01 1.11 3.57 0.22 MgO 0.12 0.03 FeO 13.8 0.50
MnO 0.15 0.05 0.19 0.03 MgO 1.68 1.90 MnO 0.13 0.02 0.06 0.01 CaO 11.8 1.24 MnO 0.07 0.01
MgO 46.3 1.66 45.0 0.96 CaO 5.81 5.41 MgO 10.8 1.71 14.0 0.74 Na2O 4.23 0.50 MgO 20.3 0.18
CaO 0.19 0.09 0.11 0.05 Na2O 4.54 2.41 CaO 21.2 1.38 22.7 0.24 K2O 0.75 0.20 CaO 0.02 0.02
NiO 0.29 0.03 0.27 0.02 K2O 6.07 2.57 Na2O 0.78 0.42 0.44 0.01 Total 99.5  NiO 0.34 0.03
P2O5 0.07 0.03 0.05 0.02 P2O5 1.33 0.48 K2O 0.14 0.24 0.01 0.01 n 3  ZnO 0.07 0.02
Total 99.6  99.8  SO2 0.13 0.02 NiO 0.02 0.02 0.04 0.01   Total 99.4  
n 3  58  Total 97.2  P2O5 0.32 0.26 0.03 0.03   n 2  
   n 4  Total 99.0  99.6      
        n 22  3        
Abbreviations: ML: melt layer; MP: melt pocket; Ol: olivine; Gl: glass; Cpx: clinopyroxene; Pl: plagioclase; Spl: spinel.



  

Table 2: Average major-element composition (wt%) of primary and secondary phases determined by EPMA for sample MA-1

PMV CMV AMP Matrix PMV CMV AMP Matrix

Ol Ol Ol Ol Cpx Cpx Cpx Cpx

Mean        SD Mean        SD Mean        SD Mean        SD Mean        SD Mean        SD Mean         SD Mean        SD

SiO2 40.5          0.54 39.7          0.84 41.4          0.25 40.6          0.23 48.8          3.55 47.3          4.80 49.1           2.39 52.2          0.58

TiO2 0.02          0.02 0.05          0.03 0.03          0.02 0.01          0.02 1.79          1.78 2.39          2.20 1.00           0.77 0.67          0.09

Al2O3 0.08          0.17 0.10          0.10 0.07          0.03 0.01          0.01 6.37          1.96 6.60          2.72 6.72           2.09 6.30          0.66

Cr2O3 0.06          0.06 0.04          0.03 0.13          0.07 0.01          0.01 0.74          0.78 0.42          0.50 1.30           0.72 0.64          0.20

FeO 9.55          2.23 13.8          2.81 6.64          0.90 10.5          0.18 5.31          2.12 6.17          2.26 4.69           1.08 2.67          0.24

MnO 0.16          0.05 0.25          0.06 0.16          0.02 0.16          0.03 0.12          0.03 0.13          0.03 0.12           0.03 0.08          0.03

MgO 49.0          2.26 45.0          2.76 51.7          0.79 48.7          0.29 14.8          2.26 13.9          3.15 14.7           1.76 14.5          0.43

CaO 0.17          0.09 0.26          0.09 0.29          0.03 0.03          0.02 20.2          1.40 20.3          1.08 21.3           1.10 20.6          0.38

Na2O 0.04          0.03 0.74          0.40 0.68          0.34 0.61           0.29 1.78          0.20

K2O 0.03          0.03 0.02          0.03 0.04          0.02 0.02           0.02 0.01          0.01

NiO 0.35          0.06 0.19          0.09 0.33          0.06 0.35          0.03 0.03          0.03 0.04          0.03 0.04           0.02 0.03          0.02

P2O5 0.04          0.07 0.20          0.19 0.02          0.03 0.01          0.02 0.11          0.20 0.26          0.43 0.04           0.02 0.02          0.02

Total 99.9          0.35 99.5          0.86 100.7        0.30 100.3        0.30 99.0          0.50 98.3          0.88 99.7           0.37 99.6          0.37

n 14 55 11 61 26 26 12 39

Abbreviations: PMV: parallel melt vein; CMV: cross-cutting melt vein; amphibole melt pocket; Ol: olivine; Cpx: clinopyroxene.



  

Table 3: Average major-element composition (wt%) of glass and amphibole determined by EPMA for sample MA-1

PMV CMV AMP Host basalt AMP

Gl Gl Gl Gl Amp

Mean        SD Mean        SD Mean        SD Mean        SD Mean        SD

SiO2 54.0          1.26 48.8          3.23 49.6          0.61 44.1          0.47 44.5          0.13

TiO2 0.89          0.39 2.53          0.55 1.82          0.20 2.88          0.28 0.38          0.05

Al2O3 19.8          1.12 17.7          0.71 19.3          0.54 16.6          0.44 12.6          0.21

Cr2O3 0.06          0.04 0.05          0.03 0.02          0.02 0.02          0.02 1.48          0.09

FeO 4.45          0.48 8.73          2.01 6.25          0.62 9.73          0.52 5.26          0.06

MnO 0.09          0.06 0.18          0.07 0.12          0.04 0.19          0.05 0.11          0.01

MgO 2.30          0.61 1.98          0.56 1.61          0.32 3.28          0.98 18.0          0.08

CaO 6.56          1.17 6.69          1.76 5.48          0.56 8.65          0.78 10.2          0.11

Na2O 5.49          0.43 4.16          1.87 8.16          0.54 5.65          0.56 3.92          0.06

K2O 2.74          1.54 2.74          0.91 3.20          0.23 2.88          0.32 0.41          0.02

NiO 0.07          0.05 0.06          0.04 0.02          0.02 0.03          0.03 0.10          0.02

P2O5 0.27          0.37 1.23          0.38 0.85          0.17 1.24          0.19 0.02          0.01

Total 96.8          1.48 94.8          1.51 96.4          0.57 95.2          0.61 97.00        0.31



  

n 47 132 19 15 7

Abbreviations: PMV: parallel melt vein; CMV: cross-cutting melt vein; amphibole melt pocket; Gl: glass; Amp: amphibole.



  

Table 4: Average trace-element composition of primary and secondary phases determined by LA-ICP-MS for sample Ci-1-105a
 MP Matrix MP MP MP MP

 Ol Ol Cpx P-Cr-poor Cpx  Cr-poor P Ti-rich Cpx P-Cr-rich Ap

 Mean SD n Mean SD n Single SD n Mean SD n Single SD n Mean SD n
Rb 0.01 - 1 5.06 6.88 5 - - - 10.2 12.5 2 13.6 - - 0.29 0.34 2

Ba 0.96 0.11 2 41.9 76.8 8 0.15 - - 90.8 101.8 2 53.7 - - 29.0 9.42 3

Th 0.06 0.03 2 0.35 0.69 9 0.82 - - 2.54 1.64 2 2.15 - - 105.0 15.0 3

U 0.07 - 1 0.12 0.19 8 0.17 - - 0.73 0.23 2 0.63 - - 28.1 5.85 3

Nb n.d. - 0 4.26 9.66 9 0.48 - - 9.65 11.3 2 14.4 - - 0.42 0.67 3

Ta 0.02 0.02 2 0.01 - 1 0.00 - - 0.90 - - 0.01 0.02 2

La 0.13 0.15 2 3.66 6.53 8 11.0 - - 25.0 8.82 2 18.8 - - 720 70.0 3

Ce 0.05 0.07 2 5.73 11.4 10 28.9 - - 52.50 4.20 2 51.1 - - 1160 240.0 3

Pb 0.42 - 1 0.24 0.30 2 0.00 - - 1.91 - - 6.97 0.26 2

Pr 0.02 0.02 2 1.06 1.65 7 5.07 - - 7.91 0.98 2 8.67 - - 135.0 25.0 3

Sr 1.57 - 1 32.4 64.5 9 225.0 - - 280.0 15.5 2 193.0 - - 3465 545.0 3

P 165.0 70.0 3 410.0 405.0 11 110.0 - - 2430 650.0 2 1084 - - 91600 13400 3

Nd 0.19 - 1 4.34 7.19 7 25.4 - - 36.5 2.01 2 50.2 - - 535.0 88.0 3

Zr 0.56 - 1 15.8 35.3 8 59.8 - - 70.0 19.9 2 93.7 - - 7.19 2.99 3

Hf 0.06 0.06 2 0.06 - 1 - - - 3.41 - - 0.14 0.05 2

Sm 0.13 0.09 2 1.16 1.83 5 5.51 - - 8.44 2.45 2 13.0 - - 84.4 19.3 3

Eu n.d. - 0 0.20 0.39 8 1.91 - - 2.29 0.55 2 3.16 - - 16.9 3.31 3

Ti 22.8 - 1 943.0 1730 9 2650 - - 8150 7310 2 - - n.d. - -

Gd 0.12 0.13 2 0.95 1.51 5 3.97 - - 6.02 1.39 2 11.9 - - 49.9 12.0 3



  

Tb 0.06 - 1 0.01 - 2 - - - 1.25 - - 5.63 0.32 2

Dy n.d. - 0 0.49 0.80 7 3.33 - - 3.74 0.87 2 5.54 - - 20.0 4.49 3

Y 0.07 0.02 2 1.59 3.51 9 14.8 - - 20.3 2.58 2 25.7 - - 95.7 8.02 3

Ho n.d. - 0 0.11 0.18 7 0.54 - - 0.67 0.12 2 1.02 - - 3.16 0.67 3

Er 0.13 - 1 n.d. - 0 - - - 2.84 - - 8.24 0.63 2

Tm 0.07 0.06 2 0.06 - 1 - - - 0.21 - - 0.83 0.04 2

Yb 0.07 0.05 2 0.20 0.37 7 0.88 - - 1.12 0.01 2 1.43 - - 4.28 1.02 3

Lu 0.01 0.01 2 0.07 0.08 5 0.12 - - 0.14 0.01 2 0.25 - - 0.66 0.19 3

Li 4.73 0.66 3 4.54 0.71 2 - - - 2.06 - - 0.23 0.06 2

V 4.03 2.88 3 26.9 43.8 11 175.0 - - 310.0 160.0 2 485.7 - - 7.82 2.77 3

Sc 3.58 2.36 3 4.75 2.93 11 62.4 - - 87.9 40.8 2 119.4 - - 1.29 0.64 3

B 1.47 0.12 2 1.39 - 3 - - - 2.18 - - 1.28 1.07 2

Ni 2190 80.0 2 2200 230.0 3 305.0 - - 445.0 160.0 2 250.0 - - 2.30 1.82 3

Cr 88.0 86.0 2 110.0 50.0 3 175.0 - - 310.0 165.0 2 9400 - - n.d. - -

n.d. not determined; Abbreviations: MP: melt pocket; Ol: olivine; Cpx: clinopyroxene; Ap: apatite.



  

Table 5: Trace-element composition of olivine and clinopyroxene determined by LA-ICP-MS for sample MA-1
 PMV CMV Matrix PMV CMV Matrix Matrix
 Ol Ol Ol Cpx Cpx Cpx-core Cpx-rim

 Mean Mean Single Single Single Single Single
Rb 0.30 0.26 0.05 10.6 155.0 n.d. n.d.

Ba 3.17 3.80 16.6 1060 2290 n.d. 0.14

Th 0.07 0.01 0.003 6.29 37.4 0.03 0.15

U 0.02 0.002 0.001 2.53 17.5 0.12 0.50

Nb 0.68 0.37 0.01 90.0 385.0 0.07 0.04

Ta 0.04 0.03 0.05 3.87 30.4 0.001 0.003

La 0.38 0.04 0.03 69.8 266.4 0.75 1.27

Ce 0.52 0.30 0.24 140.0 550.0 2.56 3.01

Pb 0.86 0.04 0.01 4.68 14.3 0.14 0.16

Pr 0.05 0.01 0.48 17.7 66.7 0.56 0.60

Sr 2.77 0.69 0.05 335.0 3550 44.8 46.3

Nd 0.13 0.03 0.01 69.2 245.0 3.44 3.67

Zr 1.06 3.68 n.d. 175.0 1460 26.0 26.5

Hf 0.02 0.03 n.d. 5.29 36.1 0.86 1.00

Sm 0.03 0.01 n.d. 18.1 58.8 1.56 1.85

Eu 0.02 0.01 n.d. 4.59 16.1 0.73 0.74

Ti 30.1 47.2 2.67 14950 69200 4230 4480



  

Gd n.d. n.d. 0.01 18.4 40.8 2.53 2.64

Tb 0.01 n.d. 0.001 3.17 7.4 0.51 0.51

Dy 0.04 0.001 n.d. 16.2 35.7 3.49 3.11

Y 0.20 0.04 0.04 102.0 185.0 19.4 19.4

Ho n.d. 0.003 n.d. 4.15 7.9 0.75 0.79

Er 0.02 0.01 0.003 9.95 17.5 2.16 1.96

Tm 0.005 n.d. 0.001 1.89 2.73 0.32 0.32

Yb 0.05 0.01 0.01 7.68 12.1 2.08 2.21

Lu 0.003 n.d. n.d. 1.15 1.93 0.29 0.31

Li 3.58 1.45 4.69 n.d. 40.8 3.02 1.91

V 2.78 0.99 2.22 1200 1400 280.0 285.0

Sc 3.47 1.21 1.38 465.0 215.0 68.5 71.5

n.d.: not determined;

Abbreviations: PMV: parallel melt vein; CMV: cross-cutting melt vein; Ol: olivine; Cpx: clinopyroxene.



  

Table 6: Trace-element composition of glass and amphibole determined by LA-ICP-MS for sample MA-1
 PMV CMV MI Matrix Matrix Host basalt
 Gl Gl Gl Amp-core Amp-rim Gl

 Mean Mean Single Single Single Single
Rb 1940 305.0 220.0 1.10 54.2 805.0

Ba 13300 4220 1450 6.38 890.0 10550

Th 115.0 70.6 18.4 0.33 8.71 180.7

U 29.4 13.8 5.26 0.06 3.02 210.6

Nb 1550 690.0 220.0 5.21 135.0 1588

Ta 93.2 48.3 12.8 0.78 6.43 130.0

La 726 430.0 120.0 18.9 63.5 1107

Ce 1290 836.9 225.0 68.8 110.0 1965

Pb 78.8 26.5 18.8 0.12 4.49 64.1

Pr 135.0 90.6 26.6 9.98 12.2 220.0

Sr 6950 5640 980.0 19.0 645.0 16300

Nd 540.0 340.0 90.8 41.3 45.0 870.0

Zr 2550 1922 450.0 115.0 220.0 4850

Hf 55.7 42.2 9.84 5.84 5.01 99.7

Sm 83.0 58.6 17.4 11.5 8.91 157.6

Eu 25.4 18.9 5.22 3.26 2.22 42.2

Ti 108000 78500 19400 2800 9800 195000



  

Gd 71.8 49.1 16.2 11.3 6.11 125.0

Tb 13.1 7.6 2.39 2.02 0.91 18.4

Dy 53.6 29.4 12.4 12.4 5.19 82.5

Y 295.0 165.0 61.6 62.9 27.0 465.0

Ho 9.88 7.65 2.31 2.54 1.02 18.1

Er 25.7 12.9 5.01 6.89 2.88 41.7

Tm 3.62 2.39 0.66 0.99 0.39 5.60

Yb 18.0 10.0 5.01 6.40 2.01 31.4

Lu 2.66 1.77 0.71 0.76 0.30 2.61

Li 125.0 65.2 19.0 9.06 11.0 205.0

V 1670 910.0 380.0 175.0 185.0 2205

Sc 108.2 53.1 67.3 140.0 26.0 158.5

Abbreviations: PMV: parallel melt vein; CMV: cross-cutting melt vein; MI: melt inclusion; Gl: glass; Amp: amphibole.



  

Table 7: The two adopted sets of clinopyroxene/melt Kd values
Alkali 
basalt

Basaltic 
andesite

Alkali 
basalt

Basaltic 
andesite

U 0.032a,b,d 0.04i Ho 1.53b,d 1.128j

P 0.021267 0.021267q,r Y 2.39b 0.736f,j

V 3.1d 1.21h,i Dy 0.8115b,c,d,e 0.489833m,v,u

Nb 0.06b,d 0.02235m,s,t,u,v Gd 0.4805c,d,e 0.606667h,j

Ta 0.22a,b,d 0.136y Eu 0.354a,c 0.46h,i

Ti 0.388857f 0.9f Sm 0.727b,c,d 0.675f,h,i,j

Hf 0.48a,b,d,e 0.3i Tm 0.449d 0.7184l,o,p

Zr 0.27a,b,d,e 0.4f Nd 0.6335b,c,d,e 0.45f,h

Th 0.07a,b,d 0.03i La 0.288a,b,c,d,e 0.1174f,i,j

Pr 0.79b,d 0.214333p Tb 0.575a,d 0.625i

Ce 0.341b,c,d,e 0.208f,h,i Pb 0.008287 0.008287m,n

Sc 1.31a,d 2.9825j,k Sr 0.239b,c 0.081067f,g

Lu 0.365c,d,e 0.5875j Ba 0.044a,b,c,d 0.04383g,h

Yb 0.4115c,d,e 1.3495m,t,u,v,w,x Li 0.16b 0.26l



  

Er 0.566c,e 0.8f Rb 0.13a 0.07686f,g

a: Villemant et al. (1981), b: Wood and Trigila (2001), c: Shimizu (1980), d: Zack 
and Brumm (1998), e: Fujimaki et al. (1984), f: Ronov and Yaroshevskiy (1976), g: 
Hart and Brooks (1974), h: Reid (1983), i: Dostal et al. (1983), j: Gallahan and 
Nielsen (1992), k: Ewart et al. (1973), l: Matsui et al. (1977), m: Hauri et al. (1994), 
n: Beattie (1993), o: Irving and Frey (1984), p: Skulski et al. (1994) q: Brunet and 
Chazot (2001), r: Baker and Wyllie (1992), s: Jenner et al. (1993), t: Johnson and 
Kinzler (1989), u: Johnson (1994), v: Hart and Dunn (1993), w: Hack et al. (1994), 
x: Nicholls and Harris (1980), y: Forsythe et al. (1994). 
*From l to z the kds are for basaltic melt.


