11,603 research outputs found

    Quasinormal frequencies of asymptotically flat two-dimensional black holes

    Full text link
    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.Comment: 12 pages. Accepted for publication in Gen. Rel. and Gra

    Energy Level Alignment in Organic-Organic Heterojunctions: The TTF-TCNQ Interface

    Get PDF
    The energy level alignment of the two organic materials forming the TTF-TCNQ interface is analyzed by means of a local orbital DFT calculation, including an appropriate correction for the transport energy gaps associated with both materials. These energy gaps are determined by a combination of some experimental data and the results of our calculations for the difference between the TTF_{HOMO} and the TCNQ_{LUMO} levels. We find that the interface is metallic, as predicted by recent experiments, due to the overlap (and charge transfer) between the Density of States corresponding to these two levels, indicating that the main mechanism controlling the TTF-TCNQ energy level alignment is the charge transfer between the two materials. We find an induced interface dipole of 0.7 eV in good agreement with the experimental evidence. We have also analyzed the electronic properties of the TTF-TCNQ interface as a function of an external bias voltage \Delta, between the TCNQ and TTF crystals, finding a transition between metallic and insulator behavior for \Delta~0.5 eV

    The oxygen abundance in the IFU era

    Full text link
    Spatially-resolved information of gas-phase emission provided by integral field units (IFUs) are allowing us to perform a new generation of emission-line surveys, based on large samples of HII regions and full two-dimensional coverage. Here we present two highlights of our current studies employing this technique: 1) A statistical approach to the abundance gradients of spiral galaxies, which indicates an -universal- radial gradient for oxygen abundance; and 2) The discovery of a new scaling relation of HII regions in spiral galaxies, the "local" mass-metallicity relation of star-forming galaxies.Comment: 6 pages, to appear in Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spai

    Semiconductor cavity QED: Bandgap induced by vacuum fluctuations

    Full text link
    We consider theoretically a semiconductor nanostructure embedded in one-dimensional microcavity and study the modification of its electron energy spectrum by the vacuum fluctuations of the electromagnetic field. To solve the problem, a non-perturbative diagrammatic approach based on the Green's function formalism is developed. It is shown that the interaction of the system with the vacuum fluctuations of the optical cavity opens gaps within the valence band of the semiconductor. The approach is verified for the case of large photon occupation numbers, proving the validity of the model by comparing to previous studies of the semiconductor system excited by a classical electromagnetic field. The developed theory is of general character and allows for unification of quantum and classical descriptions of the strong light-matter interaction in semiconductor structures

    Les Empreses multinacionals i els seus efectes en l'estructura i en la política econòmica

    Get PDF
    • …
    corecore