4,362 research outputs found

    A life course approach to diet, nutrition and the prevention of chronic diseases

    Get PDF
    Abstract Objective: To briefly review the current understanding of the aetiology and prevention of chronic diseases using a life course approach, demonstrating the life-long influences on the development of disease. Design: A computer search of the relevant literature was done using Medline-‘life cycle' and ‘nutrition' and reviewing the articles for relevance in addressing the above objective. Articles from references dated before 1990 were followed up separately. A subsequent search using Clio updated the search and extended it by using ‘life cycle', ‘nutrition' and ‘noncommunicable disease' (NCD), and ‘life course'. Several published and unpublished WHO reports were key in developing the background and arguments. Setting: International and national public health and nutrition policy development in light of the global epidemic in chronic diseases, and the continuing nutrition, demographic and epidemiological transitions happening in an increasingly globalized world. Results of review: There is a global epidemic of increasing obesity, diabetes and other chronic NCDs, especially in developing and transitional economies, and in the less affluent within these, and in the developed countries. At the same time, there has been an increase in communities and households that have coincident under- and over-nutrition. Conclusions: The epidemic will continue to increase and is due to a lifetime of exposures and influences. Genetic predisposition plays an unspecified role, and with programming during fetal life for adult disease contributing to an unknown degree. A global rise in obesity levels is contributing to a particular epidemic of type 2 diabetes as well as other NCDs. Prevention will be the most cost-effective and feasible approach for many countries and should involve three mutually reinforcing strategies throughout life, starting in the antenatal perio

    Secure Grouping Protocol Using a Deck of Cards

    Full text link
    We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the remaining parties are divided (except for certain public predetermined constraints, such as the number of parties in each group). In this paper, we construct an information-theoretically secure protocol using a deck of physical cards to solve the problem, which is jointly executable by the parties themselves without a trusted third party. Despite the non-triviality and the potential usefulness of the secure grouping, our proposed protocol is fairly simple to describe and execute. Our protocol is based on algebraic properties of conjugate permutations. A key ingredient of our protocol is our new techniques to apply multiplication and inverse operations to hidden permutations (i.e., those encoded by using face-down cards), which would be of independent interest and would have various potential applications

    Spin-label ESR studies of lipid-protein interactions in thylakoid membranes.

    No full text

    Concept drift detection based on anomaly analysis

    Full text link
    © Springer International Publishing Switzerland 2014. In online machine learning, the ability to adapt to new concept quickly is highly desired. In this paper, we propose a novel concept drift detection method, which is called Anomaly Analysis Drift Detection (AADD), to improve the performance of machine learning algorithms under non-stationary environment. The proposed AADD method is based on an anomaly analysis of learner’s accuracy associate with the similarity between learners’ training domain and test data. This method first identifies whether there are conflicts between current concept and new coming data. Then the learner will incrementally learn the non conflict data, which will not decrease the accuracy of the learner on previous trained data, for concept extension. Otherwise, a new learner will be created based on the new data. Experiments illustrate that this AADD method can detect new concept quickly and learn extensional drift incrementally

    Laser patterning of amorphous silicon thin films deposited on flexible and rigid substrates

    Get PDF
    The possibility of direct writing thin semiconductive channels and structures on insulating substrates in a clean room-free process is attractive for its simplicity, cost effectiveness, and possibility of a wide choice of substrates. A broad range of applications, such as large-area electronic devices (touch screens, flexible displays), sensors, or optical wave guides could benefit from such a process. In this work, we directly write on doped hydrogenated amorphous silicon (a-Si:H), with thickness in the range 10 nm–1 μm, using a Nd-YAG laser operating at 532 nm that is part of a Witec Raman confocal system. The contrast in conductivity between the exposed and unexposed areas is so high that the a-Si:H matrix needs not to be removed after exposure. B- and P-doped films were deposited on plastic, glass, and oxidized silicon wafers. The laser power threshold for crystallization was studied. The highest conductivity (886 Ω−1 cm−1) was obtained on wafer. On hard substrates, it is possible to tune the mesoscopic electrical conductivity in a very broad range of values (∼10−4–103) by design of the pattern to be transferred. Patterned films are piezoresistive with gauge factors as high as +18 and −29 for p- and n-type patterns, respectively. SEM image of laser written lines on a 10 nm thick a-Si:H film deposited on a Si/SiO2 substrate. Four regions are clearly distinguishable: the metal contact on the top area; the laser eroded area (lines); the crystallized areas adjacent to lines; the amorphous region at the bottom right.CNPqThe authors acknowledge Witec GmbH for collaboration in disclosing the set of instructions needed to communicate with Witec Four software

    A role for SUMO modification in transcriptional repression and activation

    Get PDF
    Since the discovery of the SUMO (small ubiquitin-like modifier) family of proteins just over a decade ago, a plethora of substrates have been uncovered including many regulators of transcription. Conjugation of SUMO to target proteins has generally been considered as a repressive modification. However, there are now a growing number of examples where sumoylation has been shown to activate transcription. Here we discuss whether there is something intrinsically repressive about sumoylation, or if the outcome of this modification in the context of transcription will prove to be largely substrate-dependent. We highlight some of the technical challenges that will be faced by attempting to answer this question

    Adolescent male chimpanzees (Pan troglodytes) form social bonds with their brothers and others during the transition to adulthood

    Full text link
    Social relationships play an important role in animal behavior. Bonds with kin provide indirect fitness benefits, and those with nonkin may furnish direct benefits. Adult male chimpanzees (Pan troglodytes) exhibit social bonds with maternal brothers as well as unrelated adult males, facilitating cooperative behavior, but it is unclear when these bonds develop. Prior studies suggest that social bonds emerge during adolescence. Alternatively, bonds may develop during adulthood when male chimpanzees can gain fitness benefits through alliances used to compete for dominance status. To investigate these possibilities and to determine who formed bonds, we studied the social relationships of adolescent and young adult male chimpanzees (N = 18) at Ngogo in Kibale National Park, Uganda. Adolescent male chimpanzees displayed social bonds with other males, and they did so as often as did young adult males. Adolescent and young adult males frequently joined subgroups with old males. They spent time in proximity to and grooming with old males, although they also did so with their age peers. Controlling for age and age difference, males formed strong association and proximity relationships with their maternal brothers and grooming relationships with their fathers. Grooming bonds between chimpanzee fathers and their adolescent and young adult sons have not been documented before and are unexpected because female chimpanzees mate with multiple males. How fathers recognize their sons and vice versa remains unclear but may be due to familiarity created by relationships earlier in development.Adolescent male chimpanzees, by age 12 years, have as many strong grooming bonds as do young adults.Research HighlightsAdolescent male chimpanzees form social bonds with other males.Bonds were common between unrelated males, but frequent with maternal brothers, peers, old males, and fathers.Fathers may be important for male chimpanzees transitioning to adulthood.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153616/1/ajp23091.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153616/2/ajp23091_am.pd
    corecore