660 research outputs found

    Structural transitions in vertically and horizontally coupled parabolic channels of Wigner crystals

    Full text link
    Structural phase transitions in two vertically or horizontally coupled channels of strongly interacting particles are investigated. The particles are free to move in the xx-direction but are confined by a parabolic potential in the yy-direction. They interact with each other through a screened power-law potential (rner/λr^{-n}e^{-r/\lambda}). In vertically coupled systems the channels are stacked above each other in the direction perpendicular to the (x,y)(x,y)-plane, while in horizontally coupled systems both channels are aligned in the confinement direction. Using Monte Carlo (MC) simulations we obtain the ground state configurations and the structural transitions as a function of the linear particle density and the separation between the channels. At zero temperature the vertically coupled system exhibits a rich phase diagram with continuous and discontinuous transitions. On the other hand the vertically coupled system exhibits only a very limited number of phase transitions due to its symmetry. Further we calculated the normal modes for the Wigner crystals in both cases. From MC simulations we found that in the case of vertically coupled systems the zigzag transition is only possible for low densities. A Ginzburg-Landau theory for the zigzag transition is presented, which predicts correctly the behavior of this transition from which we interpret the structural phase transition of the Wigner crystal through the reduction of the Brillouin zone.Comment: 9 pages, 13 figure

    Induced order and reentrant melting in classical two-dimensional binary clusters

    Get PDF
    A binary system of classical charged particles interacting through a dipole repulsive potential and confined in a two-dimensional hardwall trap is studied by Brownian dynamics simulations. We found that the presence of small particles \emph{stabilizes} the angular order of the system as a consequence of radial fluctuations of the small particles. There is an optimum in the increased rigidity of the cluster as function of the number of small particles. The small (i.e. defect) particles melt at a lower temperature compared to the big particles and exhibit a \emph{reentrant} behavior in its radial order that is induced by the intershell rotation of the big particles.Comment: 7 pages, 3 figure

    Conceptualising humiliation

    Get PDF
    Humiliation lacks an empirically derived definition, sometimes simply being equated with shame. We approached the conceptualisation of humiliation from a prototype perspective, identifying 61 features of humiliation, some of which are more central to humiliation (e.g. losing self-esteem) than others (e.g. shyness). Prototypical humiliation involved feeling powerless, small, and inferior in a situation in which one was brought down and in which an audience was present, leading the person to appraise the situation as unfair and resulting in a mix of emotions, most notably disappointment, anger, and shame. Some of the features overlapped with those of shame (e.g. looking like a fool, losing self-esteem, presence of an audience) whereas other features overlapped with those of anger (e.g. being brought down, unfairness). Which specific features are present may determine whether the humiliation experience becomes more shame- or anger-like (or a combination thereof)

    Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    Get PDF
    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.The work is funded by and part of the European Commission Life project named Simulation of the release of nanomaterials from consumer products for environmental exposure assessment (SIRENA, Pr. No. LIFE 11 ENV/ES/596). The access and use of the facilities at the Flemish Institute for Technological Research (VITO) was funded by QualityNano Project through Transnational Access (TA Application VITO-TAF-382 and VITO-TAF-500) under the European Commission, Grant Agreement No: INFRA-2010-262163. Kristof is also thankful for partial funding by the School of Engineering at Robert Gordon University for his studentship

    Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

    Get PDF
    Gang scheduling has long been adopted by the high-performance computing community as a way to reduce the synchronization overhead between related threads. It allows for several threads to execute in lock steps without suffering from long busy-wait periods or be penalized by large context-switch overheads. When combined with non-preemptive execution, gang scheduling significantly reduces the execution time of threads that work on the same data by decreasing the number of memory transactions required to load or store the data. In this work, we focus on two main types of gang tasks: rigid and moldable. A moldable gang task has a presumed known minimum and maximum number of cores on which it can be executed at runtime, while a rigid gang task always executes on the same number of cores. This work presents the first response-time analysis for non-preemptive moldable gang tasks. Our analysis is based on the notion of schedule abstraction; a new approach for response-time analysis with the promise of high accuracy. Our experiments on periodic rigid gang tasks show that our analysis is 4.9 times more successful in identifying schedulable tasks than the existing utilization-based test for rigid gang tasks.</p

    Belief in karma is associated with perceived (but not actual) trustworthiness

    Get PDF
    Believers of karma believe in ethical causation where good and bad outcomes can be traced to past moral and immoral acts. Karmic belief may have important interpersonal consequences. We investigated whether American Christians expect more trustworthiness from (and are more likely to trust) interaction partners who believe in karma. We conducted an incentivized study of the trust game where interaction partners had different beliefs in karma and God. Participants expected more trustworthiness from (and were more likely to trust) karma believers. Expectations did not match actual behavior: karmic belief was not associated with actual trustworthiness. These findings suggest that people may use others’ karmic belief as a cue to predict their trustworthiness but would err when doing so

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Take it or leave it for something better? Responses to fair offers in ultimatum bargaining

    Full text link
    We investigated if responders accept a 50-50 split in a modified version of the ultimatum game, in which rejection yields a higher payoff (€7) than accepting the equal offer (€5). Therefore, the decision to accept the 50-50 split in this modified ultimatum game cannot be perceived as a self-interest act, as opposed to the standard game, in which acceptance may reflect resignation in the knowledge that the equal split is the best one can expect. A substantial proportion of responders accepts the equal split in this modified game (Study 1), which clearly establishes egalitarian preferences. Further studies show that the willingness to accept is not an artifact of indifference towards the extra payoff (Study 2), but reflects true concerns for proposers’ outcomes (Study 3)

    A Comprehensive Approach to Identify Reliable Reference Gene Candidates to Investigate the Link between Alcoholism and Endocrinology in Sprague-Dawley Rats

    Get PDF
    Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction and breast cancer. Estrogen (E2) is an important sex hormone because it serves as a key protein involved in organism level signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations, preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses using quantitative real time PCR (qRT-PCR). The validity of qRT-PCR-based conclusions is affected by the choice of reliable internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs) as potential reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm, dCt method, NormFinder, BestKeeper, and RefFinder) was performed to identify the minimal number as well the most stable reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO), ovariectomized rats in the absence (OVX) or presence of E2 (OVXE2). These rat groups were subdivided into subgroups that received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH, and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step for gene expression assays

    Politeness and compassion differentially predict adherence to fairness norms and interventions to norm violations in economic games

    Get PDF
    Adherence to norms and interventions to norm violations are two important forms of social behaviour modelled in economic games. While both appear to serve a prosocial function, they may represent separate mechanisms corresponding with distinct emotional and psychological antecedents, and thus may be predicted by different personality traits. In this study, we compared adherence to fairness norms in the dictator game with responses to violations of the same norms in third-party punishment and recompensation games with respect to prosocial traits from the Big Five and HEXACO models of personality. The results revealed a pattern of differential relations between prosocial traits and game behaviours. While norm adherence in the dictator game was driven by traits reflecting good manners and non-aggression (i.e., the politeness aspect of Big Five agreeableness and HEXACO honesty-humility), third-party recompensation of victims—and to a lesser extent, punishment of offenders—was uniquely driven by traits reflecting emotional concern for others (the compassion aspect of Big Five agreeableness). These findings demonstrate the discriminant validity between similar prosocial constructs and highlight the different prosocial motivations underlying economic game behaviours
    corecore