9 research outputs found

    Thymoquinone-loaded PLGA nanoparticles: Antioxidant and anti-microbial properties

    No full text
    The aim of the present study was to synthesize and characterize the Thymoquinone (TQ) encapsulated PLGA (poly (dl-lactide-co-glycolide) nanoparticles, and further evaluate for its antioxidant and anti-bacterial activities. TQ is a potential active ingredient of Nigella sativa seed and possess a spectrum of therapeutic properties. Nanoparticles were prepared according to solid-in-oil-in-water (s/o/w) solvent evaporation method. Dynamic laser light scattering (DLS) and SEM studies indicated a mean particle size of < 200 nm. The success of encapsulation was confirmed by FTIR technique, and the encapsulation efficiency (EE) of TQ was determined to be 62. In vitro drug release study showed a maximum release of TQ at 75 and 54 respectively for artificial intestinal and gastric juices over the period of 7 days. DPPH radical scavenging activity of the nanoparticles was found to be 71 at 1 mg/ml concentration. It also exhibited antibacterial property against E. coli, Staphylococcus aureus and Salmonella typhi strains, tested using well diffusion method. In conclusion, our study shows that PLGA encapsulated TQ nanoparticle with sustained release property has preserved antioxidant as well as anti-microbial activity, and therefore suggesting its therapeutic applications in various food samples

    In vitro SPF and photostability assays of emulsion containing nanoparticles with vegetable extracts rich in flavonoids

    No full text
    The aim of study was to determine the in vitro sun protection factor (SPF) and the photostability profile of a topical formulation composed of nanoparticles loaded with vegetable extracts and to assess its physicochemical properties. Chitosan/tripolyphosphate (TPP) nanoparticles loaded with flavonoids-enriched vegetable extracts (Ginkgo biloba L., Dimorphandra mollis Benth, Ruta graveolens, and Vitis vinifera L.) were produced and characterized for their morphology, mean particle size, zeta potential, and encapsulation efficiency. A final topical formulation was obtained by dispersing chitosan/TPP nanoparticles in an o/w emulsion. Results showed that nanoparticles dispersion exhibited yellowish color, spherical shape, and uniform appearance. Extract-loaded chitosan/TPP nanoparticles showed a mean particle size of 557.11±3.1 nm, polydispersity index of 0.39±0.27, zeta potential of +11.54±2.1 mV, and encapsulation efficiency of 75.89% of rutin. The recorded texture parameters confirm that the developed formulation is appropriate for skin application. The SPF obtained was 2.3±0.4, with a critical wavelength of 387.0 nm and 0.69 UVA/UVB ratio. The developed formulation exhibited photostability, allowing the release of flavonoids from nanoparticles while retaining rutin into the skin in a higher extension.The authors acknowledge FAPESP (grant number 2015/25533-7 and 2017/14757-7), CAPES, and CNPq agencies for the financial support of this study. The authors also acknowledge the financial support received from the Portuguese Science and Technology Foundation (FCT/MCT) and from the European Funds (PRODER/COMPETE) under the project reference M-ERA-NET/0004/2015-PAIRED, co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio
    corecore