697 research outputs found

    Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture

    Get PDF
    This study determined the effect of two tree planting methods (woodland and a silvopastoral agroforestry system) on the soil bulk density and organic carbon content of a grassland site in lowland England. Soil organic carbon was measured in pasture, silvopastoral tree, and woodland treatments at six depths representative of 0–150 cm. Fourteen years after tree planting, the organic carbon content in the surface soil layer (0–10 cm) was greatest in the pasture (6.0 g 100 g− 1) and least in the woodland (4.6 g 100 g− 1); the value (5.3 g 100 g− 1) below the silvopastoral trees was intermediate. In the 10–20 cm layer, the organic carbon content in the woodland was 13% lower than the pasture. No treatment effects on soil carbon were detected below 20 cm. Possible reasons for the decline in surface soil carbon include a decline in grass cover and reduced soil water content. Measurements of above ground carbon storage by the trees indicated that tree planting increased overall carbon storage, with the silvopastoral system predicted to achieve a higher level of carbon storage than equivalent areas of separate woodland and pasture. A power analysis indicates that a prohibitively large number of replicates is needed to ensure a lower than 20% risk of falsely concluding no treatment differences at individual depth increments below 10 cm and cumulative depths extending below 40 cm

    Stigma resistance in online child free communities : the limitations of choice rhetoric

    Get PDF
    People who are voluntarily childless, or ‘‘childfree,’’ face considerable stigma. Researchers have begun to explore how these individuals respond to stigma, usually focusing on interpersonal stigma management strategies. We explored participants’ responses to stigma in a way that is cognisant of broader social norms and gender power relations. Using a feminist discursive psychology framework, we analysed women’s and men’s computer-assisted communication about their childfree status. Our analysis draws attention to ‘‘identity work’’ in the context of stigma. We show how the strategic use of ‘‘choice’’ rhetoric allowed participants to avoid stigmatised identities and was used in two contradictory ways. On the one hand, participants drew on a ‘‘childfree-by-choice script,’’ which enabled them to hold a positive identity of themselves as autonomous, rational, and responsible decision makers. On the other hand, they mobilised a ‘‘disavowal of choice script’’ that allowed a person who is unable to choose childlessness (for various reasons) to hold a blameless identity regarding deviation from the norm of parenthood. We demonstrate how choice rhetoric allowed participants to resist stigma and challenge pronatalism to some extent; we discuss the political potential of these scripts for reproductive freedom

    A first assessment of the sources of isoprene and monoterpene emissions from a short-rotation coppice Eucalyptus gunnii bioenergy plantation in the UK

    Get PDF
    Eucalyptus gunnii is a fast-growing, cold-tolerant tree species endemic to Tasmania that is suitable for growing as short-rotation coppice (SRC) plantations in the UK. Fast growing eucalypts such as E. gunnii could potentially deliver higher biomass yields with a superior calorific value for the domestic bioenergy market than other SRC plantation species such as willow or poplar. However, eucalypts are known emitters of biogenic volatile organic compounds (BVOC) like isoprene and monoterpenes. These compounds contribute to the formation of atmospheric pollutants such as ozone and secondary organic aerosols. An assessment of the sources of BVOCs during the lifecycle of a UK E. gunnii SRC plantation found the mean standardised emissions of isoprene and total monoterpenes from branches of juvenile foliage to be 7.50 ÎŒg C gdw−1 h−1 and 1.30 ÎŒg C gdw−1 h−1, respectively. The predominant monoterpene emitted was cis-ÎČ-ocimene. Isoprene emissions from the forest floor were extremely low but monoterpene emissions peaked at 50 ÎŒg C m−2 h−1. α-Pinene and d-limonene were the major components of the monoterpene emissions, with higher emissions correlated to the abundance of leaf litter. Both the magnitude and composition of monoterpene emissions from the forest floor varied during the SRC plantation life cycle, with the coppiced and regrowth stands of eucalyptus producing less emissions. The woodchip produced at harvesting emitted only trace levels of isoprene but substantial monoterpene emissions, up to 90 ÎŒg C m−2 h−1, predominately eucalyptol. Harvesting and resulting biomass chips may provide a short-lived concentrated source of BVOCs in winter at SRC plantations. Modelled annual emissions using MEGAN 2.1 (canopy emissions only) suggest that BVOC emissions from a UK E. gunnii SRC plantation are most abundant in summer, and that modelled annual isoprene and total monoterpenes emissions could be around 6.9 kg C ha−1 and 2.4 kg C ha−1 respectively, for a young plantation. Based on the very limited data, the per-hectare E. gunnii isoprene emissions are smaller than estimates for other SRC/SRF plantation species in the UK; the per-hectare monoterpene emissions are in the span of estimates for other plantation species

    Multiple ejections during the 1975 outburst of A0620-00

    Get PDF
    The well-known black-hole X-ray transient A0620-00 was a bright radio source during the first part of its outburst in 1975. We have revisited the available data and find for the first time evidence that the source exhibited multiple jet ejections. Rapid radio spectral changes indicate the addition of at least three new components which are initially optically thick. From single baseline interferometry taken about three weeks after the start of the X-ray outburst we find that the source is extended on arcsec scales and infer a relativistic expansion velocity. Some of the other (soft) X-ray transients, such as GS 1124-68 and GS 2000+25, show very similar X-ray outburst light curve shapes to that of A0620-00, while their radio outburst light curve shapes are different. We suggest that this is due to the radio emission being strongly beamed in outburst, whereas the X-ray emission remains isotropic. Since this effect is stronger at higher jet velocities, this strengthens our conclusion that the jets in A0620-00 and other soft X-ray transients move with relativistic speeds

    Exploring the “overflow tap” theory: linking forest soil CO2 fluxes and individual mycorrhizosphere components to photosynthesis

    Get PDF
    Quantifying soil organic carbon stocks (SOC) and their dynamics accurately is crucial for better predictions of climate change feedbacks within the atmosphere-vegetation soil system. However, the components, environmental responses and controls of the soil CO2 efflux (Rs) are still unclear and limited by field data availability. The objectives of this study were (1) to quantify the contribution of the various Rs components, specifically its mycorrhizal component, (2) to determine their temporal variability, and (3) to establish their environmental responses and dependence on gross primary productivity (GPP). In a temperate deciduous oak forest in south east England hourly soil and ecosystem CO2 fluxes over four years were measured using automated soil chambers and eddy covariance techniques. Mesh-bag and steel collar soil chamber treatments prevented root or both root and mycorrhizal hyphal in-growth, respectively, to allow separation of heterotrophic (Rh) and autotrophic (Ra) soil CO2 fluxes and the Ra components, roots (Rr) and mycorrhizal hyphae (Rm). Annual cumulative Rs values were very similar between years (740±43 g Cm−2 yr−1) with an average flux of 2.0±0.3 ÎŒmol CO2 m−2 s−1, but Rs components varied. On average, annual Rr, Rm and Rh fluxes contributed 38, 18 and 44 %, respectively, showing a large Ra contribution (56 %) with a considerable Rm component varying seasonally. Soil temperature largely explained the daily variation of Rs (R2 = 0.81), mostly because of strong responses by Rh (R2 = 0.65) and less so for Rr (R2 = 0.41) and Rm (R2 = 0.18). Time series analysis revealed strong daily periodicities for Rs and Rr, whilst Rm was dominated by seasonal ( 150 days), and Rh by annual periodicities. Wavelet coherence analysis revealed that Rr and Rm were related to short-term (daily) GPP changes, but for Rm there was a strong relationship with GPP over much longer (weekly to monthly) periods and notably during periods of low Rr. The need to include individual Rs components in C flux models is discussed, in particular, the need to represent the linkage between GPP and Ra components, in addition to temperature responses for each component. The potential consequences of these findings for understanding the limitations for long-term forest C sequestration are highlighted, as GPP via root-derived C including Rm seems to function as a C “overflow tap”, with implications on the turnover of SOC

    Isoprene and monoterpene emissions from alder, aspen and spruce short rotation forest plantations in the UK

    Get PDF
    An expansion of bioenergy has been proposed to help reduce fossil-fuel greenhouse gas emissions, and short-rotation forestry (SRF) can contribute to this expansion. However, SRF plantations could also be sources of biogenic volatile organic compound (BVOC) emissions, which can impact atmospheric air quality. In this study, emissions of isoprene and 11 monoterpenes from the branches and forest floor of hybrid aspen, Italian alder and Sitka spruce stands in an SRF field trial in central Scotland were measured during two years (2018–2019) and used to derive emission potentials for different seasons. Sitka spruce was included as a comparison as it is the most extensive plantation species in the UK. Winter and spring emissions of isoprene and monoterpenes were small compared to those in summer. Sitka spruce had a standardised mean emission rate of 15 ”gCg−1h−1 for isoprene in the dry and warm summer of 2018 – more than double the emissions in 2019. However, standardised mean isoprene emissions from hybrid aspen were similar across both years, approximately 23 ”gCg−1h−1, and standardised mean isoprene emissions from Italian alder were very low. Mean standardised total monoterpene emissions for these species followed a similar pattern of higher standardised emissions in the warmer year: Sitka spruce emitting 4.5 and 2.3 ”gCg−1h−1 for 2018 and 2019, aspen emitting 0.3 and 0.09 ”gCg−1h−1, and Italian alder emitting 1.5 and 0.2 ”gCg−1h−1, respectively. In contrast to these foliage emissions, the forest floor was only a small source of monoterpenes, typically 1 or 2 orders of magnitude lower than foliage emissions on a unit of ground area basis. Estimates of total annual emissions from each plantation type per hectare were derived using the MEGAN 2.1 model. The modelled total BVOC (isoprene and monoterpenes) emissions of SRF hybrid aspen plantations were approximately half those of Sitka spruce for plantations of the same age. Italian alder SRF emissions were 20 times smaller than from Sitka spruce. The expansion of bioenergy plantations to 0.7 Mha has been suggested for the UK to help achieve net-zero greenhouse gas emissions by 2050. The model estimates show that, with such an expansion, total UK BVOC emissions would increase between <1 % and 35 %, depending on the tree species planted. Whereas increases might be small on a national scale, regional increases might have a larger impact on local air quality
    • 

    corecore