24 research outputs found

    Small scale experimental validation of a numerical model of the HarshLab2.0 floating platform coupled with a non-linear lumped mass catenary mooring system

    Get PDF
    When focusing on mooring system numerical modelling, the efforts are focused on validating models that increase the accuracy and maintain the computation time under reasonable limits. In this paper an approach for modelling the interaction among supporting structure and mooring system is introduced through kinematic relations. The proposed approach has been validated with the experimental wave tank 1:13.6 scaled data of the HarshLab 2.0 platform, a CALM type buoy moored with a three-line catenary system and used as a floating laboratory for materials and corrosion testing, to be installed at BiMEP. The drag forces of the buoy as well as the Morison coefficients of the heave-pitch coupling, induced by the attached structure for ships boat landing, have been identified. Results of the mooring line tensions are validated with imposed displacements of the structure and, subsequently, with coupled simulations of the moored buoy in a set of realistic sea states. Sources of differences on the estimation of line tensions are found to be mainly due to uncertainties of seabed friction forces, a high sensitivity of line tensions to small swaying and a poor pitching performance of the numerical model, very likely due to a very non-linear pitching of the physical model

    Numerical Approaches for Loads and Motions Assessment of Floating WECs Moored by Means of Catenary Mooring Systems

    Get PDF
    Technologies for harvesting offshore renewable energy based on float- ing platforms, such as offshore wind, wave and tidal energies, are currently being developed with the purpose of achieving a competitive cost of energy. The eco- nomic impact of the mooring system is significant within the total cost of such deployments, and large efforts are being carried out to optimize designs. Analysis of mooring systems at early stages generally require a trade-off between quick analysis methods and accuracy to carry out multi-variate sensitivity analyses. Even though the most accurate approaches are based on the non-linear finite ele- ment method in the time domain, these can result in being very time consuming. The most widely used numerical approaches for mooring line load estimates are introduced and discussed in this paper. It is verified that accurate line tension estimates require lines drag and inertia forces to be accounted for. A mooring and floating structure coupled model based on the lumped mass finite element ap- proach is also discussed, and it is confirmed that the differences found in the coupled numerical model are mainly produced by the uncertainty on hydrody- namic force estimates on the floating structure rather than by the lumped mass method. In order to enable quick line tension estimates, a linearization of the structure and mooring coupled model is discussed. It shows accurate results in operational conditions and enables modal analysis of the coupled system

    Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 ÎĽ\mum with PlanetCam-UPV/EHU

    Full text link
    We provide measurements of the absolute reflectivity of Jupiter and Saturn along their central meridians in filters covering a wide range of visible and near-infrared wavelengths (from 0.38 to 1.7 ÎĽ\mum) that are not often presented in the literature. We also give measurements of the geometric albedo of both planets and discuss the limb-darkening behavior and temporal variability of their reflectivity values for a period of four years (2012-2016). This work is based on observations with the PlanetCam-UPV/EHU instrument at the 1.23 m and 2.2 m telescopes in Calar Alto Observatory (Spain). The instrument simultaneously observes in two channels: visible (VIS; 0.38-1.0 ÎĽ\mum) and short-wave infrared (SWIR; 1.0--1.7 ÎĽ\mum). We obtained high-resolution observations via the lucky-imaging method. We show that our calibration is consistent with previous independent determinations of reflectivity values of these planets and, for future reference, provide new data extended in the wavelength range and in the time. Our results have an uncertainty in absolute calibration of 10--20\%. We show that under the hypothesis of constant geometric albedo, we are able to detect absolute reflectivity changes related to planetary temporal evolution of about 5-10\%.Comment: 13 pages, 18 figures, (in press

    NAUTILUS-DTU10 MW Floating Offshore Wind Turbine at Gulf of Maine: Public numerical models of an actively ballasted semisubmersible

    Get PDF
    This study presents two numerical multiphysics models of the NAUTILUS-10 floating support structure mounting the DTU10 MW Reference Wind Turbine at Gulf of Maine site, and analyses its dynamics. With the site conditions and the FAST model of the onshore turbine as the starting point, the floating support structure: tower, floating substructure with its corresponding active ballast system and station keeping system, was designed by NAUTILUS. The numerical models were developed and the onshore DTU wind energy controller was tuned to avoid the resonance of the operating FOWT by TECNALIA, in the framework of H2020 LIFES50+ project. This concept and its subsystems are fully characterised throughout this paper and implemented in opensource code, FAST v8.16. Here, the mooring dynamics are solved using MoorDyn, and the hydrodynamic properties are computed using HydroDyn. Viscous effects, not captured by radiation-diffraction theory, are modelled using two different approaches: (1) through linear and quadratic additional hydrodynamic damping matrices and (2) by means of Morison elements. A set of simulations (such as, decay, wind only and broadband irregular waves tests) were carried out with system identification purposes and to analyse the differences between the two models presented. Then, a set of simulations in stochastic wind and waves were carried out to characterise the global response of the FOWT.European Union Horizon2020 programme under the agreement H2020-LCE-2014-1-640741, LIFES50+ projec

    On building physics-based AI models for the design and SHM of mooring systems

    Get PDF
    Expert systems in industrial processes are modelled using physics-based approaches, data-driven models or hybrid approaches in which however the underlying physical models generally constitute a separate block with respect to the Artificial Intelligence (AI) technique(s). This work applies the novel concept of “imbrication”-a physics-based AI approach-to the mooring system of offshore renewable energy devices to achieve a complete integration of both perspectives. This approach can reduce the size of the training dataset and computational time while delivering algorithms with higher generalization capability and explicability. We first undertake the design of the mooring system by developing a surrogate model coupled with a Bayesian optimiser. Then, we analyse the structural health monitoring of the mooring system by designing a supervised Deep Neural Network architecture. Herein, we describe the characteristics of the imbrication process, analyse preliminary results of our investigation and provide considerations for orienting further research work and sector applicability

    Heat Treatment Process Energy Efficient Design and Optimisation

    Get PDF
    AbstractEnergy efficiency optimization ICT (Information and Communication Technology) solutions are currently being developed for energy saving in buildings and, to some ex-tent, also for the manufacturing domain. This paper describes an approach and ICT tool developed for manufacturing process energy efficiency optimization, in particular focused on the heat treatment process of steel casting parts. Traditionally this manufacturing process is designed based on experts experience selecting a predefined temperature-time curve provided customer specifications for the resulting steel parts. However this curve can actually be optimised in terms of energy consumption while keeping required mechanical properties. This improved design is what the tool here described provides, using knowledge based approach for process design and multivariate optimisation and simulation techniques for process optimisation

    OC6 Phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine

    Get PDF
    Phase I of the OC6 project is focused on examining why offshore wind design tools underpredict the response (loads/motion) of the OC5-DeepCwind semisubmersible at its surge and pitch natural frequencies. Previous investigations showed that the underprediction was primarily related to nonlinear hydrodynamic loading, so two new validation campaigns were performed to separately examine the different hydrodynamic load components. In this paper, we validate a variety of tools against this new test data, focusing on the ability to accurately model the low-frequency loads on a semisubmersible floater when held fixed under wave excitation and when forced to oscillate in the surge direction. However, it is observed that models providing better load predictions in these two scenarios do not necessarily produce a more accurate motion response in a moored configuration.The authors would like to acknowledge the support of the MARINET2 project (European Union’s Horizon 2020 grant agreement 731084), which supplied the tank test time and travel support to accomplish the testing campaign. The support of MARIN in the preparation, execution of the modeltests, and the evaluation of the uncertainties was essential for this study. MARIN’s contribution was partly funded by the Dutch Ministry of Economic Affairs through TKI-ARD funding programs. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes
    corecore